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1. EXECUTIVE SUMMARY 
 

MuG Virtual Research Environment should provide the members of the 3D/4D genome community             
with an adequate combination of relevant information, data, and computational tools. The            
combination should help, with a friendly access, the researcher to analyse data, either from              
repositories, or obtained from experiment or simulation; combine and compare such analysis results             
with related studies and reference data.f 

MuG VRE prototype was presented in Sept 2016, and described, together with all design              
considerations in D5.1. This document describes the implementation of the software components in             
the first beta release of MuG Virtual Research Environment portal (https://vre.multiscalegenomics.eu).           
In brief, the portal in based in a central workspace that allow the user to find together data and tools                    
related to research operations in 3D/4D genomics. User is offered a series of tool and visualization                
options and may analyze together data coming from different levels of the 3D/4D genomics              
ecosystem. The portal backend is responsible to channel the analysis or simulation operations to the               
appropriate infrastructure, manage the execution, and collect the results back to the workspace. MuG              
VRE is implemented in two cloud systems at IRB, and BSC premises, and was presented last 15th                 
November 2017, in the conference “Multidimensional Genomics: The 3D/4D organization of           
chromatin” and is open to users and developers. The document is organized as follows: Section 3 will                 
recall the design guidelines and highlight the most relevant improvements; section 4 describes in detail               
the implementation of the software components and the state of the infrastructure; section 5 details               
of the present offer of data and applications; and a glimpse of expected improvements during the last                 
year of the project (section 6). Usage policies both for users and developers are summarized in section                 
7, and finally additional information as usage statistics recovered so far, addresses for software              
repositories, and data types and formats understood by MuG VRE, are included in the Annexes section. 

 

2. INTRODUCTION 
 

3D/4D genomics community is a highly heterogeneous community where researchers focus their work             
in a specific scale of the problem without usually accessing to the others. The main reason for such                  
situation is the heterogeneity of data types and tools (see D3.1 for a more formal discussion). MuG                 
Virtual Research Environment has been designed to cover this heterogeneity with a common             
infrastructure that allow users to work at their respective level of expertise but also provide a seamless                 
access to the other levels with the necessary degree of integration among data and tools. In summary,                 
MuG VRE puts together data coming from atomistic simulations, genome annotation, middle and high              
scale 3D genomics, and cell biology imaging data, and establishes the necessary relationships among              
the different levels to build an integrated view of the biological phenomena under study. The               
computational infrastructure should assure interoperability of analysis tools and generate an           
integrated environment with a seamless transition among the available data levels. The design of MuG               
VRE has been split in several components, a 3D/4D browser (WP3), a data infrastructure (WP4), and a                 
collection of interoperable analysis tools (WP6), all components supported by a computational            
infrastructure (WP5). MuG VRE computational infrastructure described here has the mission of            
managing the above components, and integrate them in a single user environment, assuring the best               
efficiency in data mobilization and process. The chosen strategy (see D5.1), will allow VRE members i)                
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browse the available data in an integrated way, ii) incorporate raw data to the VRE that will perform                  
the appropriate analysis, and incorporate results to MuG’s data repository, iii) use the VRE as an                
analysis infrastructure using the available tools on existing or uploaded data, and iv) download data in                
the appropriate formats for in-house further analysis.  

MuG VRE infrastructure design was originally described in D5.1. The initial prototype has been active               
since Oct 2016, and has been used as a test bed to develop software components and developments                 
produced in the project and the protocol and components for the integration of analysis and               
simulation tools. After this period, the original design has been reconsidered and updated, and the               
components of the infrastructure following the final design have been implemented as MuG VRE first               
beta version, and released to the community (15th Nov 2017). We present here details of such                
implementation, the present state of the infrastructure, and the roadmap of evolution in the last year                
of the MuG project. MuG VRE is available at http://vre.multiscalegenomics.eu .  

 

3. UPDATE OF COMPUTATIONAL INFRASTRUCTURE INITIAL DESIGN 
 

MuG computational infrastructure has been designed to fulfil the following principles (taken from             
D5.1): 

1. Flexible environment, able to adapt to the specific needs of the analysis tools (from WP6),               
both in terms of software requirements, or computational resources.  

2. Software scheduler(s), able to manage analysis workflows, and computational resources in a            
transparent and adaptable manner. This will be an elastic infrastructure with automatic            
adaptation to user loads. 

3. Multi-scale execution. Analysis workflows could be executed either at the cluster level, in HPC              
environments, or distributed infrastructures like EGI, and eventually in the forthcoming           
European Science Cloud (EOSC) ecosystem. 

4. Web-based access centered in the MuG multi-scale browser (designed in WP3). This will be              
complemented by programmatic access using well-established interfaces including Galaxy.         
User access will integrate the Authentication and Authorization Infrastructure being designed           
within the Elixir initiative. 

5. The infrastructure will be eventually interfaced to European e-infrastructures, including the           
EGI for computation, and EUDAT for shared storage. 

  

Figure 1 shows a general schema of MuG VRE infrastructure. The original design was largely               
maintained and most changes constitute a refinement of the implementation based in the upgrade of               
the software components. In particular the following updates are worth to be mentioned here. Full               
details of the improvements will be described in the following sections.  

● User workspace has been re-structured. User workspace constitutes the organization center           
for the complete activity on the MuG VRE. The workspace is now presented as a collection of                 
analysis projects. This makes easier the access to the data and results, and allows to intuitively                
filter the workspace contents and provide integrated presentations of the analysis results.  

● PMES software scheduler has been rebuilt. PMES can now be controlled through a REST              
interface. This simplifies the interaction between the workspace backend and the PMES            
scheduler, allowing both systems to be physically separated. This is relevant as it opens the               
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possibility of remote scheduling of tool’s executions and makes possible to evolve to a truly               
distributed VRE. Also PMES can now fully replace the use of traditional queuing systems (like               
SGE) to manage execution demand.  

● Building of the Virtual Machines have been improved to make then usable in different cloud               
infrastructures.  

● A protocol for the integration of tools in the VRE has been designed (see section 5.2). Python                 
based skeletons for new tools are now available, what simplifies the addition of new tools, and                
also makes easier the communication of such tools with the workspace, as all tools share a                
common interface to communicate with the VRE workspace.  

● A data management plan (DMP) has been put in place (see D4.5). Data management inside               
MuG VRE is being updated to the new protocol. Once completed MuG workspace will be               
available through a uniform REST API, shared by all MuG components. This will again simplify               
data transmission and will empower the distribution of the workload among several cloud             
systems, and the availability of MuG’s data to third party  

● User authentication have been derived to a centralized server based on Keycloak [1] software,              
allowing to access to VRE using a variety of identity providers.  

 

 

Figure 1. Layout of MuG's computational infrastructure  

4. PRESENT IMPLEMENTATION OF MuG SOFTWARE COMPONENTS 
 

The following section describes individually the implementation of software components used the            
initial installation and their specific function.  
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4.1. MuG Cloud deployments 
 

MuG VRE infrastructure has been designed as a fully virtualized environment. This layout allows to               
deploy new instances of the VRE Backend in new cloud infrastructures with minimal overhead.              
Besides, tools deployed as virtual machines, allows to configure an elastic infrastructure, to cover              
peaks of demand, or to configure complex workflow schemes. MuG VRE has been deployed in two                
cloud infrastructures based on OpenNebula [2] (IRB and BSC), and the KVM hypervisor [3] (see Table                
1). Additionally, a small instance at the EMBL-EBI’s Embassy cloud has been deployed for testing               
purposes. 

The generation of Virtual Machines has been adapted to make them compatible with the deployment               
in both openNebula and openStack [9] cloud managers, allowing their use in a wider set of cloud                 
platforms, including Elixir Compute Platform and EGI providers.  

Table 1. Present deployments of MuG-VRE 

Institution Cloud infrastructure Specifications Deployed software 

IRB OpenNebula 84 core, 1,5TB RAM 
 

Production VRE 
Development VRE 

BSC OpenNebula  96 core, 1TB RAM, 90 
TB storage 

Development VRE 
Authentication VM 

EMBL-EBI OpenStack 16 core, 64 RAM, 1 TB 
storage 

PyCOMPS testing VMs 
Selected tools 
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4.2. Process management 
 

4.2.1. Sun Grid Engine queuing system / oneflow 
Sun Grid Engine (SGE) [4] was designed to manage distributed software executions in heterogeneous              
computational environments. SGE is used normally in cluster based infrastructures as a general             
process scheduler. Capabilities of SGE include, among other, resource management, remote execution,            
parallel execution management, interactive processes, monitoring and accounting, integration with          
Amazon EC2 or Hadoop. MuG VRE backend uses SGE to manage applications where no complex               
workflows are necessary, although peaks of demand requiring the deployment of additional workers             
may be expected. To adapt to MuG general infrastructure (Figure 1), a specific connection with               
OpenNebula cloud manager has been set up through the use of oneFlow [5], a component of the                 
OpenNebula framework that allows managing Multi-VM application and auto-scaling. Figure 2 shows a             
schema of the structure implemented in MuG VRE. 

 

Figure 2.  Layout of the integration of Sun Grid engine in MuG computational infrastructure 

   

Each VRE tool execution is send to a separated SGE queue populated with multiple instances of the VM                  
where the tool implementation is encapsulated. The availability of these instances is controlled by              
oneFlow, who dynamically deploys them according to a set of configurable system metrics like the               
waiting time of the jobs, or the VM load. In this way, SGE queue workers can automatically grow or                   
shrink on demand, with the only restriction of having at least one VM already deployed and ready to                  
accepts jobs in each SGE queue. 
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4.2.2. COMPSs programming model    
COMPS Superscalar (COMPSs) [6] is a programming model and runtime designed to simplify the              
development and execution of distributed applications. COMPSs applications are programmed in a            
completely sequential manner, but contain code annotations that identify certain methods as tasks             
that can be executed in a remote location. Using these annotations, COMPSs runtime is able to                
automatically detect and exploit the inherent parallelism of the application, and to execute it on               
various distributed platforms, such as Grids, Clouds, and clusters. 

COMPSs runtime implements a master-worker architecture that can be seen in Figure 3. Master and               
workers are processes that can run on different virtual machines (VM) or physical nodes depending on                
the characteristics of the underlying infrastructure. COMPSs runtime manages the available           
computational resources in a completely transparent manner and, in the case of elastic infrastructures              
such as Clouds, the runtime can dynamically create and destroy workers to tailor the computational               
capacity to the application workload. 

 

 

Figure 3. COMPSs master-worker architecture. 

    

COMPSs runtime is based on the Java programming language. However, COMPSs also supports C/C++              
and Python applications through bindings. In the context of the MuG project, users mainly employ the                
Python binding (also known as PyCOMPSs) due to their familiarity with this programming language.              
COMPSs applications consist of a main program and a set of annotated methods. The main program is                 
the entry point of the application and is executed by the COMPSs master, whereas annotated methods                
are executed remotely by workers. The main program of an application is executed sequentially, and               
the master generates and stores a task object every time that it encounters a call to an annotated                  
method. Task objects consist of the annotated method code, and a description of its input and output                 
variables. These variables define the data dependencies between tasks and thus the order in which               
tasks can be executed. For example, if task T1 writes a variable that is read by task T2, we say that                     
there is a read-after-write dependency between T1 and T2 that forces T2 to be executed only after T1                  
has finished. Task objects are stored in a directed acyclic graph, called the dependency graph, where                
nodes represent tasks and edges represent the dependencies between them. As tasks become             
dependency-free, they are scheduled for execution in an available worker. The scheduling algorithm             
maximizes data locality by allocating tasks where their input data is stored whenever possible.              
However, if a task cannot be executed where its input data is located, the necessary data transfers are                  
performed between workers before task execution. 
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4.2.3. Programming Model Enactment Service 
The Programming Model Enactment Service (PMES) [7] controls the execution of jobs in an underlying               
Cloud platform through an Open Cloud Computing Interface (OCCI) [8] Server (Figure 4). The PMES               
offers a REST interface with four main operations to manage jobs: 

● createActivity: to launch new jobs  
● terminateActivity: to cancel one or more jobs  
● getActivityStatus: to get the status of one or more jobs  
● getActivityReport: to obtain a report of one or more jobs 

The PMES supports two types of jobs: single and COMPSs jobs. Single jobs consist of the execution of a                   
single command on a VM, while COMPSs jobs involve the execution of a COMPSs application using one                 
or more VMs. Single jobs provide an easy way of running already existing applications in the Cloud,                 
while COMPSs jobs allow for the execution of large parallel workflows. In the case of single jobs, the                  
PMES manages the only VM employed, whereas in the case of COMPSs jobs, the PMES manages the                 
COMPSs master VM, and the COMPSs runtime creates additional worker VMs if necessary. 

 

Figure 4. Overview on the PMES execution infrastructure. 

Images to create VMs are obtained from a Virtual Appliance Repository. Each of these VM images                
contains all the binaries and libraries necessary for running a specific user application (or set of                
applications). In this manner, binaries and libraries do not need to be installed every time that a job is                   
executed. In the case of COMPSs applications, the VM image also contains the COMPSs runtime. 

VM images do not contain any application input data, as this is dynamically read from a Network                 
Storage system accessible from all VMs. In Mug implementation this storage system consists of a               
private partition where users can store sensitive data, and a public partition where users can make                
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data available to others, or data from public repositories can be cached. Both input and output                
application data is read and written from the Network Storage so that costly data transfers are                
avoided. 

PMES job life cycle consists of three main phases: VM creation and contextualization, application              
execution, and VM destruction. This life cycle thus begins when a createActivity request is              
received. createActivity requests contain a JSON document that specifies the characteristics of the             
job to run. An example of this JSON document can be seen in Figure 5. Among other information, this                   
JSON document provides the computational requirements of the job (i.e., CPU, memory, and storage),              
the name of the virtual image to deploy in the Cloud infrastructure, the job type, the application that                  
needs to be executed and its arguments, and the mount points of the shared storage in the VM. 

After receiving a createActivity request, the PMES asks the OCCI Server for the creation of a new                 
VM with the characteristics specified in the JSON document. The OCCI Server then contacts the Cloud                
Provider to deploy and contextualize the new VM. Contextualization is carried out through cloud-init,              
and consists of setting up the VM network, creating a user with the adequate permissions, generating                
SSH keys, and mounting the Network Storage partitions that makes available the user’s workspace files               
and the public data (more details in 4.3.1). The OCCI Server then informs PMES of the IP address of the                    
newly created VM, so that PMES can access the VM through SSH and execute the tool application                 
(“app” object in Figure 5). In the case of COMPSs jobs, the PMES also dynamically generates the                 
required COMPSs configuration files, and transfers them to the VM. In addition, the COMPSs runtime               
may contact the OCCI Server at execution time to create new worker VMs depending on the job                 
settings specified in the JSON document and on the application computational load. 

The PMES monitors the whole job life cycle, and periodically updates the job status and report with                 
new information. This information can be consulted at any time by means of the getActivityStatus               
and getActivityReport requests. Once the application finishes, or after receiving a           
terminateActivity request, the PMES orders the OCCI Server to destroy the previously created VM,              
and the job life cycle ends. In the case of COMPSs jobs, the destruction of worker VMs is managed by                    
the COMPSs runtime also through the OCCI Server. The OCCI Server thus abstracts the PMES and                
COMPSs runtime from the underlying infrastructure, and allows the execution of applications using             
any OCCI compliant Cloud middleware, such as OpenNebula [2] and OpenStack [9]. 

[ 

    { 

        "jobName": "processGenome_run0", 

        "wallTime": "1440", 

        "memory": 12, 

        "cores": 4, 

        "minimumVMs": 1, 

        "maximumVMs": "1", 

        "limitVMs": "1", 

        "initialVMs": 1, 

        "numNodes": "1", 

        "disk": "1.0",  

        "type": "COMPSs" 

        "mountPoints": [ 

            { 

            "target": "/MUG_USERDATA/", 

            "device": "/MuG_userdata/MuGUSER59e5ead574743", 

            "permissions": "rw" 

            }, 

            { 

            "target": "/MUG_PUBLIC/", 

            "device": "/MuG/MuG_public", 

            "permissions": "r" 

            } 

        ], 

        "user": { 
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            "username": "vre21af1", 

            "credentials": { 

                "pem": "pmes.pem", 

                "key": "pmes.key", 

                "uid": "33", 

                "gid": "33", 

                "token": "" 

            } 

        }, 

        "img": { 

            "imageName": "uuid_mg-process_62", 

            "imageType": "small" 

        }, 

        "app": { 

            "name": "process_genome", 

            "target": "/usr/local/code/mg-process-fastq", 

            "source": "process_genome.py", 

            "args": { 

              "config": "/MUG_USERDATA/processGenome_run0/.config.json", 

              "in_metadata": ”/MUG_USERDATA/processGenome_run0/.input_metadata.json", 

              “out_metadata":"/MUG_USERDATA/processGenome_run0/.results.json" 

            } 

 

        }, 

        "compss_flags": { 

            "flag": " --summary --base_log_dir=/MUG_USERDATA/processGenome_run0" 

        } 

    } 

] 

Figure 5. Example of a  JSON document included in a createActivity request. 

 

4.3. Data repository components 
 

4.3.1. Database managers 
MuG VRE user’s data is divided in two types of repositories. Metadata is held in a MongoDB [9,10]                  
database in the MMB-IRB MongoDB server following the data model as defined in the data               
management plan (DMP), which it is mainly based on a collection of data types, files types among                 
other file related attributes like the path where the file can be found in the file system (see D4.5). 

The MongoDB server not only holds the metadata referring to user’s files, but also the necessary data                 
to correctly define tools and visualizers and how they interact with user’s files. MongoDB also keeps                
track of user management, job execution, and other VRE functionalities like help, sample data              
collections, etc. The MongoDB server where MuG data is hosted, contains also reference data as a full                 
copy of Protein Data Bank [11] , and Uniprot [12], and the trajectory database BiGNASim [13]. 

Data itself is stored in a standard filesystem in its original format. The filesystem is shared with the                  
virtualized environments via the network file system protocol. The filesystem layout is organized per              
user so that the privacy of data is maintained. In fact, process managers specifically mount to the                 
deployed VM only the data belonging to the user executing the application. On the contrary, public                
repository data is mounted read-only (more details on the contextualization in 4.2.3). 

 

4.3.2. Integration of remote repositories 
MuG aims to ease the access of users to relevant public data repositories, where MuG related studies                 
are been maintained (see D4.2 for details of such repositories). In the present version if MuG,                
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metadata from selected studies of ArrayExpress [14] have been stored in the MongoDB metadata              
repository. Metadata stored correspond to that can be obtained in a automatic way from ArrayExpress               
REST API, and allows user to browse and search for specific studies using MuG VRE interface, and                 
download data into the personal workspace for further analysis. See Figure 6 for a screenshot of MuG                 
interface to ArrayExpress metadata. 

 

Figure 6. Screenshot of MuG interface to access ArrayExpress studies. 

 

4.4. User access interfaces 
 

4.4.1. Authentication 
MuG VRE should assure a complete data privacy with respect to users data and activities. To this end,                  
access to the workspace and tools, either interactively or through REST APIs is made using an                
encrypted channel (https, ssh), and users are authenticated on every access to the VRE. 

MuG VRE uses Keycloak v3.3 identity server for the authentication. Keycloak implements OpenID             
Connect 1.0 which allows for the Web access a standard username/password authentication based on              
the code authorization flow of OAuth2, and a token based authentication for the MuG REST services                
such as DMP APIs based on the implicit OAuth2 flow. VRE displays the authentication tokens in use                 
and allow to refresh them (see Figure 7.b) so that the user is able to authorize himself to the publicly                    
available DMP services via REST. 

To ease user registration, additional external identity providers like Google and LinkedIn are accepted,              
and Elixir Authorization and Authentication Infrastructure (AAI) is being integrated in short. Once the              
authentication through those providers has taken place, MuG VRE creates an internal user record with               
all security considerations in place independently on the identity providers used.  
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Figure 7. (a) VRE Login page. (b) User profile details including authorization tokens. (c)  Schema of the MuG 
centralized authorization service  based on Keycloak  

 

4.4.2. Personal workspace 
MuG VRE personal workspace is the central environment for user activity. It is based on a                
filesystem-based layout (see 4.4.2.2) where uploaded data and analysis results are available. The             
workspace gives also access to analysis and simulation tools, selected according to data types and file                
types (formats), recovering results as soon as they are available. 
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4.4.2.1. Getting data 
Users can populate the workspace in several ways (see figure 8) 

● Direct upload: Files from user’s local computer can be uploaded directly in the workspace              
through a HTTPS protocol. The amount of data that can be uploaded in this way is limited due                  
to the technical limitations of the protocol.  

● Create files: A text editor is available to create simple plain text files. This is intended for data                  
or metadata of reduced format that can be simply be typed in.  

● Upload from an External URL: MuG VRE is able to access any given URL to download data into                  
the workspace. This is the recommended procedure to include bulky data, as the procedure is               
performed in the background and no limit in size applies, being only limited by the user’s                
quota available in their workspace. This option is also recommended for obtaining data from              
public repositories.  

● From repository: A selected series of studies from public repositories are available for             
browsing in MuG VRE (see 4.3.2). Data from such studies can be incorporated directly into the                
workspace for further processing.  

 

Figure 8. Options to upload data into the workspace 

 

MuG data files should be “validated” after upload. Validation includes a number of internal check on                
formats, but also requires the user to fill in a series of metadata items. These include especially data                  
type and format selecting from a predefined list (see Annex 8.1). Data types and formats enable MuG                 
VRE to select the appropriate set of tools and visualizers usable with the uploaded files. Metadata for                 
files obtained from MuG tools are automatically obtained from the tools metadata manifest (see 5.4). 

 

4.4.2.2. The workspace 

MuG VRE workspace (see figure 9) is organized with a file system layout with an intuitive look-and-feel.                 
There are two types of data object: files and folders grouping files. The Uploads folder include all data                  
uploaded by the user in either manner (direct, edit, or URL). Data from repositories that is grouped                 
under Repository folder. The remaining folders correspond to projects, the result of executing a tool or                
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a workflow analysis. A new folder is generated for any new process started in the VRE. Next to data,                   
type and format is stated. Files can be filtered by any of the fields (name, format, data type, or                   
project). Also, a tools based filter allows to select only valid data input for a given tool.  

Files are provided with three interactive toolkits (that may not appear when not appropriate). Those               
toolkits contain the following options: 

● File toolkit: Download data or folder, edit metadata, delete, pack and compress. 
● Visualization toolkit: Available visualizers for the specific data type and format. 
● Tools toolkit: Selected tools for the specific data type and format.  

The contents of Visualization and Tools toolkits are adapted specifically to the file, using the available                
metadata. 

 

 

Figure 9. MuG VRE personal workspace 

 

Tools toolkit allows to launch tools directly. For those procedures requiring more that one input file,                
files can be selected anywhere in the workspace, and added to the execution list.  
Selection of a specific tool triggers a configuration screen (see Figure 10 for an example using                
PyDockDNA tool) where user can assign the selected data files to the appropriate input parameters of                
the tool, define the necessary settings and launch the tool. Progress of the execution can be followed                 
in the main workspace.  
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Figure 10. Configuration screen for pyDockDNA. 

 

Finally (figure 11) the MuG VRE provides constant tracking of the state of the operations performed                
and the available space in the VRE.  
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Figure 11. Personal workspace log and workspace status. 

 

4.5. User support tools 
 

4.5.1. Discussion forum 
A forum based on Discourse [15] software package is integrated in the VRE in order to enhance                 
scientific discussions relevant for the MuG community. Long-form chat rooms are organized by fields              
and tools, and users can post comments or doubts, discuss the particularities of their system, propose                
hot topics, etc.  
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Figure 12. Discussion forum main page 

 

4.5.2. Helpdesk 
A mail based ticketing system is set up in VRE to put in contact the end user with both, tool developers,                     
and the VRE development team. It opens a channel for resolving doubts and issues related to the VRE                  
behaviour, the VRE implementation of any of the offered tools, and also to gather proposals and new                 
suggestions. Mails are directly addressed to the tool author/s as well as to the site admins. 

 

5. APPLICATIONS AND DATA OFFER 
 

5.1. Analysis and Simulation tools 
 

The present table summarizes the tools integrated or in the way of being integrated in the VRE                 
together with some of their implementation details.  

Table 2. Offer of tools available at MuG VRE. 

Tool name Category Description Implementation 

Chromatin 
Dynamics 

-Chromatin 
-DNA 

Chromatin Dynamics provides a user friendly way 
to create individual 'beads-on-a-string' like 
representations of a chromatin fiber.  
 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

MC-DNA -DNA MC-DNA is a tool to rapidly create static and ● Process manager 
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dynamic B-DNA conformations of a sequence of 
interest. With the use of a Monte Carlo algorithm 
this tool runs up to 50x faster than conventional 
Molecular Dynamics providing similar accuracy. 
MC-DNA provides a three-dimensional all-atom 
representation of the DNA structure with the 
underlying sequence of interest.  

SGE-oneflow 
● tool skeleton 

custom wrapper 
● job type 

single 

MDWeb 
(MD Energy 
refinement) 
[16] 

-DNA 
-Protein 
-RNA 

MDWeb is based on well known simulation 
programs like Amber, NAMD and Gromacs, and a 
series of preparation and analysis tools, joined 
together in a common interface. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

NAFlex [17] -DNA 
-RNA 

NAFlex provides a friendly environment to analyse 
your own generated molecular dynamics 
trajectories of nucleic acid structures. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Nucleosome 
Dynamics 
[18] 

-DNA Nucleosome positioning plays a major role in 
transcriptional regulation and most DNA-related 
processes. The nucleosome dynamics server offers 
different tools to analyze nucleosome positioning 
from MNase-seq experimental data and perform 
comparative experiments to account for the 
transient and dynamic nature of nucleosome 
positioning under different cellular states. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

3D 
Consensus 
 

-DNA 
-Interactions 
-Protein 

Analyse a protein-DNA complex 3D structure to 
identify interactions and study their impact on 
specific binding by integrating experimental data 
on the protein's DNA specificity.  
3DConsensus allows the interpretation of 
experimental data on DNA-binding specificity of a 
protein through the analysis of a 3D structure of 
the complex. 
 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Process 
Genome 
[19] 

-DNA Pipeline for generating index files for a genomic 
sequence. Once the index files have been 
generated for a given assembly then they can be 
used by different pipelines/tools as they are 
required. Based on the FASTA file of a genomic 
sequence index files are generated for the 
following indexers: Bowtie2, BWA, GEM 

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 

pyDock [20] -Interactions 
-Protein 

pyDock is a tool for the structural prediction of 
protein-protein interactions.  

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 
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pyDockDNA 
[21] 

-DNA 
-Interactions 
-Protein 

pyDockDNA is a tool for the structural prediction 
of protein-DNA interactions. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

TADBit map 
filter and 
parse [22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step maps and filters  Hi-C read 
FASTQ files obtains a pseudo BAM with the 
aligned reads. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Normalize 
[22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step normalize the aligned Hi-C 
reads. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Segment 
[22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step finds Topologically 
Associating Domains (TAD)s and segments 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Binning  [22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step bins  interaction matrices. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Modeling 
[22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step  builds an ensemble of 3D 
models from the interaction matrices, able to be 
explored and visualized in TADkit. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Process 
ChiP-seq 
[19] 
 
 
IN PROGRESS 
 

-DNA Pipeline for processing ChIP-seq sequence reads 
to identify regions of DNA-protein interactions. 
Sequences are aligned to the genomic sequence 
using BWA, BioBamBam2 is used to filter out 
experimental artifacts and MACS2 is used for the 
analysis of the alignments to identify regions of 
DNA-protein interaction.  

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 

Process 
RNA-seq 
[19] 
 
 
IN PROGRESS 

-RNA 
 

Align RNA-seq data pipeline. Gene expression 
calling with Kallisto. 

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 
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Process 
WGBS [19] 
 
IN PROGRESS 
 

-DNA Align WGBS (Whole-Genome Bisulfite Sequencing) 
data. Uses BS Seeker2 and Bowtie2 

 

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 

 

5.2. Protocol for integration of tools into MuG VRE 

  
The modular and portable design of the VRE computational platform has lead to a complete               
virtualization of the analyzes and pipelines integrated in VRE. Tools live encapsulated in virtual              
machines, and the VRE core acts as a framework that delivers to them the input files and their                  
metadata, sets up the deployment procedure of the VMs, monitors the tool execution, and eventually               
gathers the output files and their metadata once the execution has finished. In order to perform all                 
these procedures, a protocol defining how the VRE core communicates with the virtualized tools has               
been established. From the point of view of a tool developer the protocol conforms the guidelines on                 
how to integrate a new tool in the VRE. 

The protocol covers two sides of the integration, first the registration of a tool in the VRE, and second,                   
the execution of the same. 

5.2.1. Tools registration 
Metadata of tools available in the VRE is stored in the MongoDB tools collection (see section 4.3), to                  
allow the system to adequately manage the applications and the types of data to be used or produced.                  
To incorporate a tool into the VRE, the developer needs to prepare, along with the tool VM itself, a the                    
tool configuration JSON file. Tool requirements and particulars are included in this document.             
Examples of the required metadata are the type of input files accepted by the tool, the arguments, the                  
expected output files, the type of application (single, COMPSs), the MuG cloud/s infrastructure in              
which the tool VM is installed, the identifier of the tool VM, the application callable to be invoked                  
inside the VM, the computational resources (cores, memory) or type of process manager (PMES,              
SGE-oneflow) that should be used. Check the schema and a example of the tool configuration JSON in                 
Annex 8.2. With all this information the VRE is able to: 

● Suggest the tool given a set of input files in the user workspace 
● Create the web form so that the user fills in the arguments before executing the tool 
● Invoke the application callable via any of the process managers (PMES or SGE-oneflow)             

following the procedure specified in the section 4.2 
● Register the tool results in the DMP so output files are findable in the workspace for the user 
● Recognize the ownership of the tool, so that tool developers have the adequate administrative              

permissions over their tools 

 

5.2.2. Tools execution 
Once the tool is properly defined, it is ready to be launched by the VRE execution engine. Figure 13                   
covers the complete life cycle of a tool execution in VRE, and summarizes the data flow carried out in                   
each step. 
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Figure 13: Life cycle of a tool execution in VRE, and how the information is transferred from the VRE user to the 

virtualized tools, and back to the VRE user. 

 

The end user, via the web interface, defines the value that input files and arguments take in a                  
particular execution. Such information is transferred to the tool via two files called input metadata               
JSON and tool configuration JSON (examples in Annex 8.2). The first contains the metadata              
corresponding to the input files, which among other attributes like data types and formats, it includes                
the file path as it is to be seen by the virtualized environment. The second file contains the parameter                   
values for the application. When the user clicks the “Compute” button, and according to the tool                
definition JSON, one of the two process managers supported by VRE (PMES, SGE-oneflow) will be               
triggered as described in section 4.2. In short, if SGE-oneflow is the election, a submit BASH file                 
invoking the application callable will be submitted to the queue, and the tool VM as part of that queue                   
will accept and start the submit file execution (example in Annex 8.2). If PMES is the selected, a REST                   
call to the create activity endpoint will be performed, and the tool VM will be deployed,                
contextualized, and finally, the application callable will be executed. Both launchers end up executing              
in the tool VM a specific command line whose executable is the application callable, and whose                
arguments are invariably: 

[application callable] 

               --in_metadata    [input metadata JSON] 

               --out_metadata [output metadata JSON]  
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               --config                [tool configuration JSON] 

 

If the application is not single but of type PyCOMPSs, the process manager will invoke the application                 
callable using PyCOMPSs libraries. In general to an instance of the the mg-tool API              
(https://github.com/Multiscale-Genomics/mg-tool-api), a tool skeleton developed by WP6, whose        
target is to ease tool integration by implementing a homogenous layer on top of the application code                 
that both, transparently deals with VRE communication, and absorbs possible application           
heterogeneities. However, for some tools still to be migrated to mg-tool, a customized script that               
honors the previously defined command line can be also executed. 

Once the execution is finished, the last step performed by the VRE engine is to gather the tool output                   
files. At this stage results exists in the file system, but not in the metadata DMP repository unless the                   
appropriate metadata is supplied beforehand (data types, formats). In this case, when the tool has a                
fixed number and name of result files, this metadata can be set as part of the tool definition JSON.                   
However, if results are dynamic, the tool should create an additional file (example in Annex 8.2) called                 
output metadata JSON file, containing such metadata that is imported by VRE, allowing to incorporate               
the results to the workspace.  

 

5.3. Data visualization 
 

Data visualizers allow VRE users to interactively analyse their data inside the workspace. Following              
with the modular philosophy of VRE, visualizers are treated in a similar way than tools are. They are                  
again defined in a MongoDB collection where accepted data types and formats are specified. However,               
they are not installed as separated VMs but installed together with the VRE core. 

Table 3 shows the available visualizers in MuG VRE 

Visualizer Description Supported Data 

NGL Viewer 
[23] 

NGL Viewer is a web application for molecular visualization. WebGL 
is employed to display molecules like proteins and DNA/RNA with a 
variety of representations. 

3D Structures and 
MD trajectories 
(PDB, DCD) 

JBrowser 
[24] 

JBrowse is a fast, embeddable genome browser built completely 
with JavaScript and HTML5, with optional run-once data formatting 
tools written in Perl.  

Genome sequence 
annotation related 
formats (BAM, BW, 
GFF, GFF3) 

TADKit [25] TADkit creates interactive 3D representations of chromatin 
conformations modeled from 3C-based interaction matrices. The 
user can overlay 1D and 2D tracks of genomic data to these 3D 
views to directly evaluate the relationship between the 3D structure 
of the genome and its biological function. 

HiC analysis data 
processed with 
TADBit (JSON, TXT) 
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5.4. MuG Data repository 
Table 4 summarizes the data currently available at MuG repositories. Data is accessible through the               
specific interfaces. Table 5 summarized the additional annotation tracks available at JBrowse visualizer. 

Table 4. Data currently available at MuG repositories 

Data Set Origin and status Comments 

Reference Databases 

Protein Data Bank (MMB-IRB) RCSB. Weekly update MongoDB, REST API 

Uniprot (MMB-IRB) EMBL-EBI. Monthly update MongoDB, REST API 

Reference Genomes EMBL-EBI, Ensembl Raw files, and specific application 
formats 

Reference Annotation Tracks Diverse Displayed in JBrowse. See Table 5 

MuG specific data and metadata 

ArrayExpress Nucleosome 
related experiments 

EMBL-EBI ArrayExpress 
(metadata test set) 

MongoDB. Web access 

MuG specific simulation set MuG partners Available through BigNASim 
engine at MuG VRE web site 

Nucl. Acids Flexibility Data MuG partners Available at MuG VRE web site 

  

Table 5. Annotation tracks available a MuG VRE’s genome browser 

Data Source 

Saccharomyces cerevisiae 

Gene and Gene predictions 
Saccharomyces Genome Database 

[26] 

Gene structure / UTRs / transcribed regions 
Yassour et al, 2009  [27] 

 

Gene Models / introns / 5’ 3’ UTR’s / unannotated transcripts Nagalakshimi et al. 2008 [28] 

Transcription Start sites Zhang, Z and Dietrich FS. 200 [29] 

Chromatin modifications Kirmizis A. et al. 2007 [30] 

Nucleosome positions Mavrich et al. 2008 [31] 

Digital genomic footprinting Hesselberth et al. 2009 [32] 

H2A.Z nucleosome positions Albert et al. 2007 [33] 
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H2A/H2B, H2A.Z/H2A.Z, H2A.Z/H2B log2 ChIp chip ratio 
Guillemette et al. 2005 [34] 

 

H3K4ac_set1D_on_WT, set1D_H3K4ac_on_H3, 

WT_H3K4ac_on_H3, WT_H3K4me3_on_H3 
Guillemette et al. 2011 [35] 

anti-Ac, H2AK7aci, H2BK16ac, H3K14ac, H3K18ac, H3K4me1, 

H3K4me2, H3K4me3, H3K9ac, H4K12ac, H4K16ac, H4K5ac, 

H4K8ac, mock, RNA PolII ChIP_chip 

Liu et al. 2005 [36] 

predicted average nucleosome occupancy, predicted nucleosome 

potential score, nucleosome sequence read count 

Field et al. 2008 [37] 

 

nucleosome positions, nucleoatac signal, nucleosome calling 

occurrences 
Schep et al. 2015 [38] 

ORC, Mcm2p binding, ARS sequences Xu et al. 2006 [39] 

ORC, ARS, Nucleosome positioning Eaton et al. 2010 [40] 

TATA_elements Rhee and Ough 2012 [41] 

Bur1, Cet1 (Capping enzyme), Ctk1 

Elf1, Kin28 (TFIIH), Paf1, Pcf11, Ser2P (RNA Pol II), Ser5P (RNA Pol 

II), Ser7P (RNA Pol II), Rpb3 (RNA Pol II), Spn1 (lws1), Spt16, Spt4, 

Spt5, Spt6, Spt6deltaC, Tfg1 (TFIIF), TFIIB 

Mayer et al. 2010 [42] 

 

Gal4, Phd1, Rap1, Reb1 Rhee and Pugh 2011 [43] 

Nucleosome architecture through cell cycle Deniz et al. 2016 [44] 

Drosophila melanogaster 

Genes, Transcripts  

Chromatin types through protein binding sites Filion et al. 2010 [45] 

Nucleosome organization Mavrich et al 2008 [46] 

Homo sapiens 

Refseq Genes  

Gencode Genes  

 

 

6. DEVELOPMENT ROADMAP 
 

6.1. User workspace 

 
Current workspace is the central point of the VRE, as it is where input and output files are listed, and                    
where tools and visualizers are selected. It reflects DMP metadata files, that in turn, are synchronized                
with the local file system. 

Future changes at the workspace go in the direction of globalizing the workspace, converting it into a                 
single virtual data space. A more integrative space where user can access data in local and remote                 
MuG instances, and selected public data, irrespective of the geographic location. Having this single              
data space requires the implementation of a distributed data model, solving security issues related the               
administration of file permissions and group roles in the DMP, and building the necessary              
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infrastructure for selecting the appropriate cloud instance for tool execution and making data             
accessible for the process (see discussion in section 6.3). 

6.2. Computational layer   
   

MuG computational infrastructure is currently composed by three cloud implementations (BSC, IRB,            
EBI-embassy). All MuG software components are ready to collaborate and operate remotely, hence             
the interconnection of these environments is being set up and tested. As a proof of concept, the                 
development VRE instance located in the IRB is remotely deploying tools at the EBI-embassy              
infrastructure. The communication is based on REST calls by which VRE posts to the remote PMES                
server the tool job request, and the remote PMES instance deploys in the EBI-embassy cloud the                
targeted VM tool, and triggers the execution using EBI provided data. The standardization and              
development of this schema will allow to extend the number of supported e-infrastructures, opening              
the possibility of including other European platforms like EGI. 

6.3. Data and Storage 
   

The main MuG VRE is in in the process of fully migrating to the recently established DMP data model,                   
based in the use of micro-services to manage data. After the migration is finished, all instances to                 
MuG, including the main VRE workspace will act as any other DMP API client, opening the possibility to                  
share data through a REST interface. However, apart from the management of files metadata, data               
itself needs to be carefully handled among MuG infrastructures. Data transfer and replication should              
be minimized in order to optimize procedure and resources, and data security and privacy need to be                 
preserved along the whole process. 

The current data management plan covers data transfer based on REST services, which gives to VRE                
the chance to smartly manage the resources across the infrastructures and ensure that data              
redundancy rules fit the especial requirements of our system. In MuG, the data load of the three                 
infrastructures is not balanced, neither is their computational resources or their repository            
accessibility, and furthermore, the resource’s end clients are diverse, they may accept streaming data              
(NGL viewer, simple HTTP downloads, etc) or may require to stage it in advance (tools executions itself,                 
custom visualizers, etc). 

Considering these particularities, there exists several software solutions that can complement the DMP             
strategy, so that VRE can delegate part of this data handling task. oneData [47], iRODS [48] (used in                  
EUDAT), or Owncloud globalize data access in distributed environments, and their inclusion is being              
studied. Redundancy rules of these engines are partially configurable, and the accessibility to them as               
local directories is also solved by most of them. However, challenges ahead include the dynamic and                
user-specific contextualization of these systems. 

 

7. MuG USAGE POLICIES 
 

7.1. User access policy 
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Users sign in for free and access to the fully featured version of VRE. Registration is open, and as                   
detailed in section 4.4.1, can use either local MuG users, or external ID providers. Once logged in, all                  
tools and visualizers currently integrated in the VRE are widely available with no restrictions. However,               
each tool implementation respects the licensing rules of the original application or pipeline code,              
hence, a scenario where a certain tool is reserved to specific users is possible. Additionally, special                
conditions for highly demanding users can be negotiated. 

Regarding data storage, VRE guarantees a private and secure space for user’s personal data. VRE terms                
of use (https://dev.multiscalegenomics.eu/applib/getTermsOfUse.php) defines the security policy       
complied, where this data is, and who is responsible for it. A priori, the assigned quota is the same for                    
all users, 20GB, although extra space can be granted individually to specific users if they request so via                  
the help-desk section. 

VRE defines three different user roles that modulate the administrative tasks a user has rights on.                
Common users have no extra privileges, while tool developer users and admin users can better monitor                
tool’s operations running behind the interface. Furthermore, admin users have a complete panel for              
controlling the infrastructure usage (quotas, mails sent, etc) and administrating the rest of user’s              
privileges 

 

  Figure 14: Main panel control for admin users 
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7.2. Tool developer accounts  
Tool developer users have special access requirements, as they need to understand what’s going on               
behind the VRE interface when fixing and debugging their tools within the platform. For helping on this                 
procedure, tool developers can: 

● list the tools owned by the user, and visualize their tool definition JSONs to check the running                 
configuration    

● consult in a simple pop up attached to each execution folder in the workspace, all the                
execution associated files (input metadata JSON, configuration tool JSON, submit file and            
output metadata JSON) that contains the data being transferred between VRE and the tool VM               
(Figure 15) 

● check absolute paths for their files 
● visualize the raw DMP metadata for all their files 
● create and edit the tool help pages using a Bootstrap Markdown editor [49] able to easily style                 

the text and uploads images. 

 

Figure 15: Extra information available for tool developers when visiting file details in the workspace 
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8. ANNEXES 

 

8.1. DMP data model: data types and file types 
 

MuG data management plan (DMP) includes a data model for files metadata that, as described in                
D4.5, includes the data type and the file type among other attributes to define the content and the                  
format of user’s file. Here, the complete collection of data types supported by VRE, and their                
associated file types.  

 

Data Type Identifier Data Type Name Associated File Types 

chromatin_3dmodel Chromatin 3D structure PDB 

chromatin_3dmodel_ensemble Ensemble of chromatin 3D structures JSON 

chromatin_compartments Chromatin compartments data TXT 

chromatin_tads Chromatin TADs BED, TXT, 

chromatin_traj Chromatin trajectory DCD 

configuration_file Tool configuration file JSON, TXT, TSV 

data_atac_seq ATAC-Seq FASTQ, BAM, BED, WIG 

data_chip_seq ChIP-Seq BED, FASTQ, BAM, TSV 

data_dna_methylation DNA methylation FASTQ, WIG, TSV 

data_fish FISH data LIF, TIFF, PNG 

data_mnase_seq MNase-Seq FASTQ, BAM, BED 

data_rna_seq RNA-Seq FASTQ, TSV, HDF5, JSON 

data_wgbs Whole Genome Bisulfite Sequencing 

FASTQ, BAM, BAI, WIG, TSV, 

TXT 

docking_ranking Docking ranking score CSV, TXT, TSV 

hic_biases HiC Biases PICKLE 

hic_contacts_coverage HiC contacts coverage WIG, BW, TXT 

hic_contacts_differential HiC differential contacts TSV 

hic_contacts_matrix HiC contact matrix TXT, HDF5 

hic_contacts_peaks HiC contact peaks TSV 

hic_directionality HiC directionality index TXT 

hic_reads HiC sequencing reads FASTQ 

hic_sequences HiC aligned reads BAM 

hic_tads_scale HiC TADs scaling factor WIG 

md_restart MD restart file RST, CPT 

na_md_atom_traj_coords Nucleic acid MD trajectory coordinates XTC, NETCDF, MDCRD 
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na_md_atom_traj_top Nucleic acid MD trajectory topology TOP, TPR, PARMTOP, PDB 

na_md_cg_traj Nucleic acid MD CG trajectory MDCRD 

na_structure Nucleic acid 3D structure PDB 

na_traj Nucleic acid trajectory DCD, MDCRD 

na_traj_coords Nucleic acid trajectory coordinates XTC, NETCDF, MDCRD 

na_traj_top Nucleic acid topology TOP, TPR, PARMTOP, PDB 

nucleosome_dynamics Nucleosome dynamics BW, GFF3, BED, WIG, RDATA 

nucleosome_free_regions Nucleosome free regions BW, GFF3, BED, WIG 

nucleosome_gene_phasing Nucleosome phasing BW, GFF3, BED, WIG 

nucleosome_positioning Nucleosome positioning BW, GFF3, BED, WIG, TXT 

nucleosome_stiffness Nucleosome stiffness BW, GFF3, BED, WIG 

prot_dna_specificity Protein-DNA specificity TSV 

prot_dna_structure Protein-DNA complex structure PDB 

prot_structure Protein 3D structure PDB 

sequence_annotation Sequence Annotation 
BED, BB, BEDGRAPH, WIG, BW, 

GFF, GFF3, GTF, VCF, TBI 

sequence_dna DNA sequence FASTA, TXT 

sequence_genomic Genomic sequence FASTA 

sequence_mapping_index_bowtie Bowtie2 index files BT2, TXT 

sequence_mapping_index_bwa BWA index files AMB, ANN, BWT, PAC, SA 

sequence_mapping_index_gem Sequence mapping index GEM 

sequence_mapping_index_kallisto Kallisto index file IDX 

sequence_prot Protein sequence FASTA 

sequence_rna RNA sequence FASTA 

structure 3D structure PDB 

tool_intermediate_file Tool Intermediate file TAR 

tool_statistics Tool summary file TAR 

tss_classification_by_nucleosomes Nucleosome TSS BW, GFF3, BED, WIG 

 

8.2. Documents, Software and data models 
 

JSON schema and example of tool definition configuration file , compulsory for registering a now tool 

in VRE 

      1.   tool definition JSON - schema 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json 

      2.   tool definition JSON - example 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.j
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son 

 

JSON examples for the configuration files  sent between VRE and tool VMs  during the tool life cycle 

execution 

      3.   input metadata JSON - example 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydoc

kProject/.input_metadata.json 

      4.   configuration tool JSON - example 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydoc

kProject/.config.json 

      5.   submit file - examples 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydoc

kProject/.submit 

      6.   Output metadata JSON - example 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydoc

kProject_out/.results.json 

 

8.3. Usage statistics 
 

Last year usage statistics reflect the major VRE events ( April 2017 workshop, November 2017 Demo                
and Release). Coinciding with these events, visitors and new users increase, currently reaching 43              
registered users. 

Total number of registered users 
● Admin users 
● Tool developers 
● Common users 

43 
  2 
12 
29 

Total used space / total quota 54/860 GB 

 

 

Figure 13. VRE page views during last year filtering out partner institution domains 
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Figure 14. Last year VRE sessions (time  user actively engaged in the  website) and users (who have initiated at 
least one session) 

 
Figure 15.  VRE tools usage since the release (last 15 days). (*) Correspond to those tools internally launched by 

VRE when I. importing a remote resource into workspace, II. importing a BAM file  

MuG–H2020-EINFRA-2015-1- 6  
 Deliverable 5.2 – Implementation of software components 34 



                                

9. REFERENCES 
1. Keycloak Authorization server. Available: http://www.keycloak.org/ 
2. OpenNebula – Flexible Enterprise Cloud Made Simple. Available: https://opennebula.org/ 
3. KVM. Available: https://www.linux-kvm.org 
4. Open Grid Scheduler. SourceForge. Available: https://sourceforge.net/projects/gridscheduler/ 
5. OneFlow — OpenNebula 4.12.1 documentation. Available:      

http://docs.opennebula.org/4.12/advanced_administration/application_flow_and_auto-scali
ng/oneapps_overview.html 

6. Lezzi D, Rafanell R, Carrión A, Espert IB, Hernández V, Badia RM. Enabling e-Science              
Applications on the Cloud with COMPSs. Lecture Notes in Computer Science. 2012. pp. 25–34.              
doi:10.1007/978-3-642-29737-3_4 

7. Lordan F, Tejedor E, Ejarque J, Rafanell R, Álvarez J, Marozzo F, et al. ServiceSs: An                
Interoperable Programming Framework for the Cloud. Int J Grid Util Comput. 2013;12: 67–91.             
doi:10.1007/s10723-013-9272-5 

8. Open Cloud Computing Interface – Open Community. Available: http://occi-wg.org/ 
9. OpenStack Open Source Cloud Computing Software. Available: https://www.openstack.org/ 
10. MongoDB for GIANT Ideas. Available: https://www.mongodb.com/index 
11. Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28: 235–242.           

doi:10.1093/nar/28.1.235 
12. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res.           

2016;45: D158–D169. doi:10.1093/nar/gkw1099 
13. Hospital A, Andrio P, Cugnasco C, Codo L, Becerra Y, Dans PD, et al. BIGNASim: a NoSQL                 

database structure and analysis portal for nucleic acids simulation data. Nucleic Acids Res.             
2016;44: D272–8. doi:10.1093/nar/gkv1301 

14. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Amy Tang Y, Williams E, et al. ArrayExpress                
update—simplifying data submissions. Nucleic Acids Res. 2014;43: D1113–D1116.        
doi:10.1093/nar/gku1057 

15. Discourse - Civilized Discussion. Available: https://discourse.org/ 
16. Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL. MDWeb and MDMoby: an                

integrated web-based platform for molecular dynamics simulations. Bioinformatics. 2012;28:         
1278–1279. doi:10.1093/bioinformatics/bts139 

17. Hospital A, Faustino I, Collepardo-Guevara R, González C, Gelpí JL, Orozco M. NAFlex: a web               
server for the study of nucleic acid flexibility. Nucleic Acids Res. 2013;41: W47–55.             
doi:10.1093/nar/gkt378 

18. nucleR. In: Bioconductor. Available: http://bioconductor.org/packages/nucleR/ 
19. Multiscale-Genomics. Multiscale-Genomics/mg-process-fastq. In: GitHub. Available:     

https://github.com/Multiscale-Genomics/mg-process-fastq 
20. Cheng TM-K, Blundell TL, Fernandez-Recio J. pyDock: electrostatics and desolvation for           

effective scoring of rigid-body protein-protein docking. Proteins. 2007;68: 503–515.         
doi:10.1002/prot.21419 

21. Multiscale-Genomics. Multiscale-Genomics/pydockdna_tool. Available:   
https://github.com/Multiscale-Genomics/pydockdna_tool 

22. Serra F, Baù D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. Automatic analysis and               
3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors.              
PLoS Comput Biol. 2017;13: e1005665. doi:10.1371/journal.pcbi.1005665 

23. Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic             
Acids Res. 2015;43: W576–9. doi:10.1093/nar/gkv402 

24. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic web                  
platform for genome visualization and analysis. Genome Biol. 2016;17: 66.          
doi:10.1186/s13059-016-0924-1 

MuG–H2020-EINFRA-2015-1- 6  
 Deliverable 5.2 – Implementation of software components 35 

http://paperpile.com/b/YW1QKh/qjn4
http://www.keycloak.org/
http://paperpile.com/b/YW1QKh/pko5
https://opennebula.org/
http://paperpile.com/b/YW1QKh/xFac
https://www.linux-kvm.org/
http://paperpile.com/b/YW1QKh/NCtn
https://sourceforge.net/projects/gridscheduler/
http://paperpile.com/b/YW1QKh/tlco
http://docs.opennebula.org/4.12/advanced_administration/application_flow_and_auto-scaling/oneapps_overview.html
http://docs.opennebula.org/4.12/advanced_administration/application_flow_and_auto-scaling/oneapps_overview.html
http://paperpile.com/b/YW1QKh/64cQ
http://paperpile.com/b/YW1QKh/64cQ
http://paperpile.com/b/YW1QKh/64cQ
http://dx.doi.org/10.1007/978-3-642-29737-3_4
http://paperpile.com/b/YW1QKh/PF4r
http://paperpile.com/b/YW1QKh/PF4r
http://paperpile.com/b/YW1QKh/PF4r
http://dx.doi.org/10.1007/s10723-013-9272-5
http://paperpile.com/b/YW1QKh/VVtL
http://occi-wg.org/
http://paperpile.com/b/YW1QKh/bnRU
https://www.openstack.org/
http://paperpile.com/b/YW1QKh/fUG8
https://www.mongodb.com/index
http://paperpile.com/b/YW1QKh/LEcm
http://paperpile.com/b/YW1QKh/LEcm
http://dx.doi.org/10.1093/nar/28.1.235
http://paperpile.com/b/YW1QKh/OS06
http://paperpile.com/b/YW1QKh/OS06
http://dx.doi.org/10.1093/nar/gkw1099
http://paperpile.com/b/YW1QKh/nojs
http://paperpile.com/b/YW1QKh/nojs
http://paperpile.com/b/YW1QKh/nojs
http://dx.doi.org/10.1093/nar/gkv1301
http://paperpile.com/b/YW1QKh/yoVf
http://paperpile.com/b/YW1QKh/yoVf
http://paperpile.com/b/YW1QKh/yoVf
http://dx.doi.org/10.1093/nar/gku1057
http://paperpile.com/b/YW1QKh/SKlx
https://discourse.org/
http://paperpile.com/b/YW1QKh/ZAIq
http://paperpile.com/b/YW1QKh/ZAIq
http://paperpile.com/b/YW1QKh/ZAIq
http://dx.doi.org/10.1093/bioinformatics/bts139
http://paperpile.com/b/YW1QKh/eUNl
http://paperpile.com/b/YW1QKh/eUNl
http://paperpile.com/b/YW1QKh/eUNl
http://dx.doi.org/10.1093/nar/gkt378
http://paperpile.com/b/YW1QKh/uXOC
http://bioconductor.org/packages/nucleR/
http://paperpile.com/b/YW1QKh/cm5h
https://github.com/Multiscale-Genomics/mg-process-fastq
http://paperpile.com/b/YW1QKh/H3Lg
http://paperpile.com/b/YW1QKh/H3Lg
http://paperpile.com/b/YW1QKh/H3Lg
http://dx.doi.org/10.1002/prot.21419
http://paperpile.com/b/YW1QKh/iBts
https://github.com/Multiscale-Genomics/pydockdna_tool
http://paperpile.com/b/YW1QKh/e7mb
http://paperpile.com/b/YW1QKh/e7mb
http://paperpile.com/b/YW1QKh/e7mb
http://dx.doi.org/10.1371/journal.pcbi.1005665
http://paperpile.com/b/YW1QKh/4FfD
http://paperpile.com/b/YW1QKh/4FfD
http://dx.doi.org/10.1093/nar/gkv402
http://paperpile.com/b/YW1QKh/61ua
http://paperpile.com/b/YW1QKh/61ua
http://paperpile.com/b/YW1QKh/61ua
http://dx.doi.org/10.1186/s13059-016-0924-1


                                

25. TADbit @ CNAG/CRG. Available: http://sgt.cnag.cat/3dg/tadbit 
26.  Saccharomyces Genome Database. Available: http://www.yeastgenome.org 
27. Yassour M1, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, Schroth G, Luo S, Khrebtukova                  

I, Gnirke A, Nusbaum C, Thompson DA, Friedman N, Regev A. Ab initio construction of a                
eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A.              
2009. 106(9):3264-9. 

28. Nagalakshmi U1, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional                 
landscape of the yeast genome defined by RNA sequencing. Science. 2008           
6;320(5881):1344-1349. 

29. Zhang Z, Dietrich FS. Mapping of transcription start sites in Saccharomyces cerevisiae using 5'               
SAGE. Nucleic Acids Res. 2005. 33(9):2838-51 

30. Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bähler J, Green RD,                 
Kouzarides T. Arginine methylation at histone H3R2 controls deposition of H3K4           
trimethylation. Nature. 2007; 449(7164):928-932. 

31. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF A                    
barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast           
genome. Genome Res. 2008 18(7):1073-1083. 

32. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S,                 
Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA. Global mapping of protein-DNA            
interactions in vivo by digital genomic footprinting. Nat Methods. 2009. 6(4):283-289. 

33. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF. Translational and                 
rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome.          
Nature. 2007;446(7135):572-576. 

34. Guillemette B, Bataille AR, Gévry N, Adam M, Blanchette M, Robert F, Gaudreau L. Variant                
histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates              
nucleosome positioning. PLoS Biol. 2005; 3(12):e384. 

35. Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E,               
Thibault P, Verreault A, Festenstein RJ. H3 lysine 4 is acetylated at active gene promoters and                
is regulated by H3 lysine 4 methylation. PLoS Genet. 2011;7(3):e1001354. 

36. Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ. Single-nucleosome                
mapping of histone modifications in S. cerevisiae. PLoS Biol. 2005; 3(10):e328. 

37. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E.                 
Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.           
PLoS Comput Biol. 2008; 4(11):e1000216. 

38. Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ. Structured              
nucleosome fingerprints enable high-resolution mapping of chromatin architecture within         
regulatory regions. Genome Res. 2015; 25(11):1757-1770. 

39. Xu W, Aparicio JG, Aparicio OM, Tavaré S. Genome-wide mapping of ORC and Mcm2p binding                
sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae.              
BMC Genomics. 2006  26;7:276. 

40. Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines               
replication origins. Genes Dev. 2010;24(8):748-753 

41. Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation            
complexes. Nature. 2012 18;483(7389):295-301. 

42. Mayer A, Lidschreiber M, Siebert M, Leike K, Söding J, Cramer P. Uniform transitions of the                 
general RNA polymerase II transcription complex. Nat Struct Mol Biol. 2010;           
17(10):1272-1278. 

43. Rhee HS, Pugh BF Comprehensive genome-wide protein-DNA interactions detected at           
single-nucleotide resolution. Cell. 2011 9;147(6):1408-1419. 

44. Deniz Ö, Flores O, Aldea M, Soler-López M, Orozco M. Nucleosome architecture throughout              

MuG–H2020-EINFRA-2015-1- 6  
 Deliverable 5.2 – Implementation of software components 36 

http://paperpile.com/b/YW1QKh/RJvw
http://sgt.cnag.cat/3dg/tadbit/
http://paperpile.com/b/YW1QKh/RJvw


                                

the cell cycle. Sci Rep. 2016 28;6:19729. 
45. Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro                  

IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B. Systematic protein location mapping            
reveals five principal chromatin types in Drosophila cells. Cell. 2010 15;143(2):212-24. 

46. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL,                   
Schuster SC, Gilmour DS, Albert I, Pugh BF. Nucleosome organization in the Drosophila             
genome Nature. 2008 15;453(7193):358-62. 

47. Onedata. Available: https://onedata.org 
48. iRODS. Available: https://irods.org/ 
49. bootstrap-markdown-editor. Available:  

https://github.com/inacho/bootstrap-markdown-editor 
 

MuG–H2020-EINFRA-2015-1- 6  
 Deliverable 5.2 – Implementation of software components 37 

http://paperpile.com/b/YW1QKh/N6iG
https://onedata.org/
http://paperpile.com/b/YW1QKh/8Vop
https://irods.org/
http://paperpile.com/b/YW1QKh/j9zS
https://github.com/inacho/bootstrap-markdown-editor





