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1 EXECUTIVE SUMMARY

We present a document describing the methods required to process and integrate the diverse data
sets MuG will handle. Well characterised, standard processing methods and tools exist for RNA-seq,
ChiP-seq and WGBS sequencing experiments. There also exists well defined rules for metadata and
ontologies as promoted by the IHEC consortium including EFO and OBI. We also nominate reference
data sets to ensure comparability between data sets. Hi-C, due to it being an emerging technology,
lacks a single coherent method of analysis to create contact matrices. However we outline the current
best available methods capable of processing this data. Challenges also exist for making sense of
microscopy data sets such as FISH. Existing work in Schizosaccharomyces pombe has shown a possible
method to reduce the representation of such data. Finally we show two possible levels of data
integration at the traditional genome level and at the 3D level and how this will feed into the MuG
standard.
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2 INTRODUCTION

Our goal is to integrate multiple cutting edge data sets spanning multiple types of analysis and the
creation of a usable virtual research environment for consortium members and external users.
Providing a suite of standard analysis programs will allow MuG to quickly integrate new data sets into
the platform and maintain comparable and consistent analysis. Here we present an evaluation of the
best in class analysis techniques for each type of data MuG will process. Where no such technique
exists we instead present the best available analyses.

2.1 Data Types Available in MuG

In M2 BSC and EMBL-EBI conducted a survey of data types and formats available in the MuG
consortium. Its results are detailed in Table 1.

Data Source Format Pilot WPs
Genomic sequences INSDC FASTA 7.1,7.2
Sequence annotations Ensembl, SGE GFF, BED, Wig 7.1,7.2
Nucleosome positioning Experiment/Prediction |GFF, Wig, FASTQ, BAM |7.2
Nucl Acids 3D Structures PDB PDB 7.3
Protein-Nucl Acids complex PDB, simulations PDB 7.3
3D Structures
Nucl Acids MD Atomistic Simulations Various 7.3
Trajectories
Nucl Acids MD CG Simulations Various 7.3
Trajectories
Nucl Acids flexibility Simulations Various 7.3
properties
RNA-seq Experiment FASTQ 7.1,7.2
ChiP-seq Experiment FASTQ 7.1,7.2
WGBS Experiment FASTQ 7.1,7.2
Hi-C Experiment FASTQ 7.1,7.2
Hi-C contact matrices Computational Wash-U Pairwise 7.1,7.2

Interactions, HDF5

Hi-C contact coverage in Computational Wig 7.1,7.2
close/far-cis, trans
Hi-C contact coverage Computational Wig 7.1,7.2
Hi-C differential contacts Computational TSV 7.1,7.2
Hi-C scaling Factor Computational Wig 7.1,7.2
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-
Hi-C contact peak Computational TSV 7.1,7.2
Hi-C TADs Computational BED 7.1,7.2
HiC directionality index Computational Text 7.1,7.2
TADs Data Computational Text 7.1,7.2
Compartments data Computational Text 7.1,7.2
Ensemble of chromatin 3D Computational JSON 7.1,7.2
structures
FISH Experiment TIFF 7.2

Table 1: The data types and data formats to be produced by the MuG consortium

3 PROCESSING WORKFLOWS
3.1 Describing Data Sets

In addition to the existing IHEC recommendations for samples and protocols they also make
recommendations for the ontologies to use for describing epigenome metadata. These are detailed in
Table 2. MuG will reuse these ontologies to define its own data sets and add them as and when terms
do not exist. At the moment however MuG is working with well known epigenomic data types and so
the need for new terms should be low. We also see ontologies such as the EFO extensible enough to
handle the new terms required to describe our imaging challenges.

Ontology Domain Data Type
Experimental Factor Ontology Sample Ontology Cell Lines
Cell Ontology Sample Ontology Primary Cells
Uberon Sample Ontology Primary Tissue
NCI Metathesaurus Disease Ontology |Disease
Ontology for Biomedical Experimental Assays and Platforms
Investigations Ontology

Table 2: The recommended set of ontologies as defined by the IHEC consortium.

For describing Nucleic Acids structure and simulations data, including protein-DNA complexes, MuG
will reuse and eventually extend the data ontology described in [1].

3.2 Sequencing Processing

Many of the data sets MuG will draw from are derived from DNA sequencing. Work package 7 has two
projects where their primary source of annotation is DNA sequencing including RNA-seq, ChlP-seq,
Hi-C and WGBS. A standard flow of analysis is detailed in Figure 1. Each protocol assigns its own
criteria to all phases including the strictness/looseness of the genome mapping procedure. The
current dominant sequence aligner is bwa [2] and forms the basis of many pipelines. Re-alignment
and re-processing is a common procedure and normally carried out to normalise data across diverse
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producers and to enable comparisons between existing data including the ENCODE [3] and Roadmap
Epigenomics projects [4]. In addition to the major project producers additional groups provide
re-analysis of the epigenetic data sets including Ensembl’s regulatory build [5].

Sample isolation,
extraction and
preparation Protocol

C( ;) Align to specific
Genome Aligned Reads analysis
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(__ Histone modification >

FASTQ Data (__ Contact matrices >

e ‘

Figure 1: Diagram to show the common flow of DNA sequencing experiments from raw data to final product. All data
must move through a process of alignment to a genome and filtering low quality reads. High quality data then moves
into the analysis phase of the protocol.

Of the four protocols mentioned RNA-seq, ChIP-seq and WGBS are all mature methods and have well
characterised methodologies. The International Human Epigenome Consortium (IHEC) [6] has
outlined a set of best practices and filtering that should be applied to any experiment being
conducted on human derived samples. These standards have been adopted into other consortia
including the Functional Annotation of Animal Genomes (FAANG) [7] showing the usefulness and
wider applicability of IHEC beyond the human genome. Our aim is to reuse those protocols and
recommendations for analysis.

3.2.1 RNA-seq Processing

Whilst a mature area of analysis no clear consensus has been reached as to the best way to analysis
RNA-seq data [8]. However we do highlight two common used strategies within the community to
quantify gene expression. The first is based on traditional alignment based strategies, normally using
splice aware aligners and transcript quantifiers such as Tophat [9] and Cufflinks [10]. The GENCODE
gene set is regarded as a high quality source of human gene annotation and extensively used in the
ENCODE project [11]. Differential gene expression can be calculated against reference data sets and
then used to highlight genes expressed at different levels in the sequenced samples. Many different
competing programs have been developed for alignment and quantification but the protocol is well
characterised. The Gene Expression Atlas group at EMBL-EBI have developed a RNA-seq analysis
pipeline, iRAP, that is capable of integrating multiple tools whilst retaining a consistent interface for
analysis [12]. iRAP is available as a command line tool and as a Docker image enabling fast
deployment in multiple environments.

More recently a new set of quantification tools have been developed and concentrate on reducing the
computational load. Salmon [13], Sailfish [14] and Kallisto [15] all perform lightweight alighment
processes avoiding whole genome alignment to reduce the overall computational load by an order of
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magnitude. Whilst not the dominant method of analysis these tools are being quickly adopted by the
community at large.

In all cases the final data sets generated are expression levels of genes mapped to stable identifiers
against a tissue/cell type/experimental condition.

3.2.2 ChiP-seq Processing

ChiP-seq allows us to find regions of the genome where DNA-associated proteins have bound or
nucleosome proteins have been modified. Once sequencing reads have been mapped to the genome
the focus switches to enriched regions, or peaks. Multiple algorithms exist to perform this function
[16,17]. Peaks can be further filtered using the ENCODE Irreproducibility Discovery Rate (IDR)
framework.

3.2.3 WGBS Processing

WGBS is the gold standard assay for measuring DNA methylation (modification of cytosine nucleotides
by the addition of a methyl group, often but not exclusively in CpG context), on the whole genome at
base level resolution. Genomic DNA is treated with sodium bisulfite that converts cytosine to uracil
with high efficiency (with typically >98% of cytosines being converted), while 5-methylcytosine is only
converted at low efficiency (<5% converted). This different behaviour of cytosine and
5-methylcytosine allows prediction of the methylation state of a given cytosine. The dominant
analysis software is Bis-SNP [18] which allows the detection of sequence variants (SNVs) and
prediction of DNA methylation from the same WGBS experiment. This is important because otherwise
SNVs can give false evidence of differential methylation between samples.

3.2.4 Mnase-seq Processing

Mnase-seq attempts to assay the nucleosome population by digesting unprotected DNA. It indirectly
assays chromatin accessibility by exposing areas of the genome already containing regulatory
elements or nucleosomes. As with ChiP-seq processing Mnase-seq is a question of mapping reads to
the genome and enriched areas. Again this is to find peaks of sequence reads and therefore the
locations of the nucleosomes. Those areas devoid of reads will be the regions with accessible
chromatin. Similar algorithms for ChiP-seq can be reused for Mnase-seq.

3.3 Chromosome Conformation Capture Analysis

Capture sequencing is a major focus of the MuG consortium in particular Hi-C [19]. Hi-C captures the
interactions that occur between regions of chromatin by covalently linking them, digesting them using
a restriction enzyme, followed by tagging, pull down of tagged fragments and high throughput
sequencing [20]. Once sequenced it is then possible to map these sequences (fragments) back to the
genome using standard alignment protocols followed by filtering and bias correction [21].
Representing a way to find the 3D folded conformation of chromosomes and the methods for
generating the data sets are well understood. However interpretation of the data is still an open
problem with many choosing to use end to end analysis pipelines such as Juicer and the bioconductor
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package diffHic. MuG is fortunate to have an analysis method for creating contact matrices and
detecting TAD (topologically associating domains) developed by CNAG in TADbit. TADbit currently
chooses to store the resulting matrices as plain text. The generated matrices are sparsely populated
since bins will have no significant interactions with the vast majority of the genome. HDF5 provides a
number of efficient sparse array storage solutions and also fast retrieval methods to reconstruct the
interaction matrices. Called TADs can be stored in TADbit’s native format or as called boundaries on
the reference genome. The selected method will depend solely on the future use of the data.

3.4 Microscopy/Image Data

As noted in our previous report “Deliverable 3.1: A critical evaluation of the problems on data
structure the browser has to solve” MuG must handle data across a wide range of scales from nm
(unpacked DNA) to um (whole cells) with 10° jumps between each scale. In many cases our
post-processed data naturally fits into each individual scale. The report noted issues with FISH images
and their ability to integrate into our platform. Our challenge is to bring representations of all data
into one of two domains; mapping to the 3D structures to be generated or mapping back to the
reference genome assembly coordinate space.

Recent work performed by Justin O’Sullivan’s lab has concentrated on the discovery of the nuclear
structure in Schizosaccharomyces pombe. It was discovered that there is a correlation between
chromosomal structure and positioning in the G1, G2 and M phase of cell development and gene
expression within S. pombe [22]. Further work has used a 2D representation of the S.pombe nucleus
(as shown in Figure 2) to highlight the locations of replication origins in both late and early firing genes
[23]. This has significantly reduced the data dimension and can define the chromosomes to have a
probability of existing within a part of the nucleus.

random model G1 phase

Figure 2: A modified figure of the 2D representation of the S. pombe nucleus taken from Pinchugina et al. 1000
genome structures were generated by polymer modelling with data sets enriched for histone modifications or
proteins. The location of chromosome 1 (indicated in red) as predicted by a random model versus the actual position in
G1 phase. Loci enriched for H3K9me2 were found at the nuclear periphery.

By defining nucleus as shells it is possible to attach a probabilistic location to a genomic loci enabling
3D spatial information to be integrated with traditional genomic annotation i.e. the 1D level. The
attachment of genomic regions will mean the platform can be capable of answering complex 3D
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positional questions of multiple loci across timepoints in a manner not currently possible. In
conjunction with this information we will annotate 3D models with the same information to ensure
the data is represented at each logical level. Both levels of annotation require the decomposition of

FISH data from raw images into values mapped against a predictable reference so as to allow
comparisons between experiments.

3.5 Setup and processing of simulation data

3.5.1 Atomistic simulations

Atomic-detail 3D structural data will be used in MuG to study flexibility and dynamics of nucleic acids
and protein-nucleic acids complexes. In particular, pilot project 7.3 will use this data to analyse the
sequence-specificity of DNA-binding transcription factors (TF). Atomistic molecular dynamics
simulations technique will be used to generate trajectories from 3D structures of protein-DNA
complexes. A standard flow of MD setup and analysis is detailed in Figure 3. The initial 3D structures
can be predicted from sequence (see next section), or retrieved from the Protein Data Bank. A setup
process needs to be performed (using for example high-throughput simulation tools as NAFlex [24])
before running the MD simulation. Once the trajectory is generated, a large number of analyses can
be performed to gain insight into the structural determinants of TF specificity and the dynamics of the
complexes. In particular, the flexibility properties of DNA, and how they are affected by TF binding,
will be studied by calculating stiffness constants as a function of the Curves+ helical parameters [25].

PDER

PROTEIN DATA BANK

Setup

Structure Structure

Sequence

-cdemcﬁ ‘:> ‘ Generate

J

Dynamics
Simulation
4

Molecular ‘

e

Analysis

Trajectory

Figure 3: Diagram to show the common flow of DNA structure MD setup and analysis. Starting from a sequence or a
structure, an initial setup is performed before the actual simulation run, and a final set of analyses are computed using
the generated trajectory.

3.5.2 Atomistic protein-protein and protein-nucleic acids 3D structural models

Very often, the 3D structure of protein-protein and protein-nucleic acids complexes involved in the
transcriptional factor complexes, as those studied in Pilot project 7.3, will not be available. In these
cases, structural models will be generated using the appropriate tools that will be integrated in the
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MuG VRE (see Task 6.1 of WP6), as follows. When needed, protein atomistic models will be built by
using widely accepted homology modeling tools, like Modeller [26] and i-Tasser [27]. When possible,
protein-protein complexes will be modelled based on available templates, or alternatively by ab initio
docking [28]. The structure of DNA will be predicted from the sequence using information derived
from long MD simulations of naked DNA [29], and refined, when required, using further specific MD
simulations. The resulting individual protein and DNA structural models will be the input for the
structural modeling of protein-DNA complexes. For a few cases, we will be able to inherit protein-DNA
general orientation from homologous templates. However, for the majority of cases, we will build
atomistic models of protein-DNA complexes by ab initio docking. Existing software for the
identification of potential nucleic acids binding sites will be used to locate the DNA molecule on the
surface of the protein. Finally, the assembly of multimolecular transcription factors will require
specialized docking tools, with ad-hoc restraints from experimental data like SAXS [30], or from the
models built at coarser-grained (mesoscopic) scale. The format of all the atomistic models that will be
generated will follow PDB standards. Existing repositories of atomistic theoretical models can be used
to deposit the generated data.
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4 THE MULTI-SCALE DATA MODEL
4.1 Stable Reference Data Sets

Due to the nature of our data it is essential to define stable reference data sets. When considering the
aforementioned analyses two types of reference data naturally select themselves; genomes and gene
sets. The first is to provide a consistent reference coordinate system to map alignments to and the
second provides a context to build value added resources upon e.g. gene expression levels. These
references are detailed in Table 3.

Species Assembly Gene Set Recommended for Analysis
Homo sapiens GRCh37 GENCODE19 No (not the live reference)
Homo sapiens GRCh38 GENCODE24 Yes
Saccharomyces cerevisiae |R64-2-1 2015 Annotation Yes

Table 3: Available major assemblies

4.2 Defining the Multi-Scale Model and Database

Considering the levels of data involved in MuG no one single model can expose the domain specific
complexities ranging from those changes at the base pair level to chromosome position within a
nucleus. The first is to build efficient mappers capable of translating between the major coordinate
spaces i.e. from the genomic level to the 3D space. Due to the nature of the data sets involved the
genome provides a useful stable backbone to map a large proportion of data to. A data set can be
represented at the genomic level so long as a data value can be mapped back to a genomic loci. This
also has the advantage that the reference genome coordinates do not assume a 3D positioning and
therefore elements mapped against it can be viewed as stable in their location. Some annotations
require additional information and cannot be annotated alone e.g. Hi-C derived contact matrices
require two genomic locations to be linked to each other resulting in a bidirectional relationship on
the genome. Our second solution is to nominate distinct levels to annotate data against. The linear
genome is one such level; as are the 3D models of chromatin. This has the effect of denormalising all
data held by MuG for the sake of faster retrieval.

No single database can handle the multiple scales of data being described here. Each level brings with
it new challenges and optimisations required for efficient storage, fast access and effective delivery to
analysis tools. For example we previously described contact matrices are sparsely populated and
therefore any solution that does not model this will suffer from an explosion of data storage costs.
Instead we suggest a single database engine that can mediate to multiple types of back-end storage
each optimised for a particular data type. This not only allows us to use the best format for storage
but also to be flexible in future solutions for data storage. We can also prototype using faster NoSQL
technologies including MongoDB until more efficient solutions become available. In this direction,
atomistic structure and simulation data is being managed at IRB Barcelona’s Data repository using
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NoSQL technologies (Cassandra and MongoDB). MuG will base its development in extending the
knowledge obtained in building such repository as well the experience of other partners, particularly
EMBL-EBI, in the management of large scale data.
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5 CONCLUSION

Whilst many data types to be processed by MuG have well defined analysis protocols some still lack
sufficient maturity. In the case of the former providing tools via the VRE will enable external
researchers to quickly integrate into the MuG environment and will also allow our partners to quickly
push data through to the eventual database stores for further analysis and visualisation. Key to this
second target is the ensure the data we store do not lose accuracy but also can provide data at a level
where the interfaces can remain responsive over a modest internet connection. The MuG consortium
and VRE must remain adaptable in the face of future analysis techniques and be open to integrating
these new technologies as and when required. Our description of the current state of affairs in
RNA-seq gene transcription analysis is a key example of a domain where there is a potential for
competing analysis standards. MuG has begun the steps towards a multi-scale data model by
embracing the benefits of each level and enabling the transfer of annotation between the different
scales.
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7 APPENDIX
7.1 Abbreviations
FAANG - Functional Annotation of Animal Genomes

IHEC - International Human Epigenome Consortium
RRBS - Reduced Representation Bisulfite Sequencing

TAD - Topologically associating domains
VRE - Virtual Research Environment
WGBS - Whole Genome Bisulfite Sequencing

7.2 Commonly Used Analysis Programs

Program Data Type Program Type Analysis

BWA Sequencing Reads  |Aligner Alignment to the genome

Bowtie Sequencing Reads  |Aligner Alignment to the genome

GEM Sequencing Reads  |Aligner Alignment to the genome

Tophat RNA-seq reads Mapper Splice junction mapper

Cufflinks Mapped RNA-seq RNA-seq Recreates transcripts from RNA-seq

reads guantification reads and estimates expression levels
Kallisto RNA-seq reads RNA-seq Estimates transcript expression levels
quantification

iRAP RNA-seq reads Meta-pipeline Pluggable pipeline for estimating
transcript expression

MACSv2 ChiP-seq alignments | Peak caller Calling peaks of significant alignment

SWEMBL ChiP-seq alignments | Peak caller Calling peaks of significant alignment

SPP ChiP-seq alignments | Peak caller Calling peaks of significant alignment

CCAT ChiP-seq alignments | Peak caller Calling peaks of significant alignment

ENCODE Peaks Peak quality Measures consistency between

Irreproducibility caller replicates

Discovery Rate

Bis-SNP WGBS reads and Methylation Finding methylated reads on the

RRBS reads detection genome

TADDbit Hi-C reads Hi-C analysis Alignment, filtering, binning and TAD
detection

diffHic Aligned Hi-C reads |Hi-C analysis Differential analysis of Hi-C data
including binning, filtering and TAD
detection
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