

Project Acronym: ​MuG

Project title:​ Multi-Scale Complex Genomics (MuG)

Call​: H2020-EINFRA-2015-1

Topic ​: EINFRA-9-2015

Project Number ​: 676556

Project Coordinator ​: Institute for Research in Biomedicine (IRB Barcelona)

Project start date ​: 1/11/2015

Duration​: 36 months

Deliverable 4.4: Database and ETL design and implementation

Lead beneficiary​: The European Bioinformatics Institute (EMBL-EBI)

Dissemination level​: PUBLIC

Due date: 15/04/2017

Actual submission date: 15/04/2017

Copyright​©​ 2015-2018 The partners of the MuG Consortium

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 676556.

Ref. Ares(2017)2141563 - 26/04/2017

Document History

Version Contributor(s) Partner Date Comments

0.1 Mark McDowall EMBL-EBI 24/03/2017 First draft

0.2 Andrew Yates EMBL-EBI 04/04/2017 Second draft

0.3 Mark McDowall EMBL-EBI 06/04/2017 Read through and corrections

0.4 Laia Codo BSC 11/04/2017 Physical storage and user
project organisation

0.5 Josep Gelpi BSC 12/04/2017

0.6 Mark McDowall EMBL-EBI 13/04/2017 Third draft

1.0 Andrew Yates EMBL-EBI 13/04/2017 Release Candidate

1.1 Adam Hospital IRB 22/04/2017 Modifications to MD/CG
dynamics

1.2 David Castillo CNAG-CRG 24/04/2017 Corrections regarding TADbit

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

2/19

Table of Contents

1 EXECUTIVE SUMMARY

2 INTRODUCTION

3 DATA STORAGE BACKGROUND

4 FILE MANAGEMENT

4.1 Data Structure

4.2 Validation

4.3 Data Access

4.4 File Formats

5 FILE STORAGE AND INDEXING

5.1 Sequence mapped data

5.1.1 Sequence Features

5.1.2 Adjacency Matrixes

5.2 3D Structures

5.2.1 3D Models

5.2.2 Trajectories

5.3 Project Storage Within The VRE

5.4 Archives

6 CONCLUSIONS

7 REFERENCES

8 ANNEXES

8.1 Abbreviations

8.2 File Formats

8.2.1 FASTA

8.2.2 FASTQ

8.2.3 SAM / BAM

8.2.4 GFF3

8.2.5 BED / BigBed

8.2.6 WIG (Wiggle)

8.2.7 CGMap and ATCGMap

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

3/19

8.2.8 HDF5

8.2.9 JSON

8.2.10 PDB

8.2.11 xtc / NetCDF / mdcrd

8.2.12 top / tpr / parmtop

8.2.13 cpt / rst

8.2.14 GEM

8.2.15 Bowtie2 Index

8.2.16 BWA Index

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

4/19

1 EXECUTIVE SUMMARY

The following document describes the mechanisms that have been developed for storing data within
the MuG Virtual Research Environment (VRE) and the tracking of files that have been loaded for use
in, or generated by, the pipelines described in D4.3. The storage is a mixture of NoSQL and indexed
files allowing for optimal retrieval of information as part of the dissemination work that is taking
place as part of D4.5. Where there has been a requirement, APIs and new pipelines have been
developed to allow easy extraction and loading of information within the COMPSs architecture and
as part of a RESTful interface. It is not expected for this storage to remain static, as requirements
develop so should the API and the underlying data model.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

5/19

2 INTRODUCTION

There are a large number of experimental tools that are required to resolve the architecture of the
chromosomes within the nucleus [vanSteensel2010]. This also means that there are a large number
of input and output file types that need to be tracked, stored and eventually made available for
visualisation or distribution. It is important that there is an infrastructure to account for all files
within the system so that when they are downloaded by the user they are able to describe how that
file was generated. Likewise, the information from these files will need to be extracted and indexed
so that the results can be requested in a logical and timely manner within the context of a RESTful
framework.

Here we present several levels to handle the storage requirements within the MuG VRE. Each
solution is tuned to the data attributes and indexing strategy required. The first level is the data
management API which tracks the files that have been loaded into the VRE, where the files are
physically located and in the case of results files a list of source files that were required. There is also
matching metadata to describe the processes that were involved in generating the data. The second
level is related to the modelling of the data within the VRE so that it can get used by other pipelines.
The third level is to process the data so that it can be efficiently used as part of a RESTful interface
allowing the visualisation of the data by other tools.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

6/19

3 DATA STORAGE BACKGROUND

Traditionally databases have been tabular in format with defined columns and many rows describing
entries. There are then links between entries in one table and those in another that have a given
relationship. This works really well for a lot of data types and scenarios, but there are times when
data does not easily fit into a relational database schema. NoSQL databases refer to a class of
database that are either one or all of the follow: “non-SQL”, “non-relational” or “not just SQL”. There
are a handful of broad classes of NoSQL databases that exist:

● Wide column stores (eg Cassandra, Vertica)
● Document stores (eg MongoDB, Elastic)
● Key-value (eg MemcacheDB)
● Triple stores (eg AllegroGraph, Virtuoso)
● Graph (eg neo4J, Titan)

There are also databases that mix two or more of these concepts, including relational databases (eg
OrientDB - ​http://orientdb.com​). Each has a specialised model for representing the data in a way that
is more a fitting for the data type. This has the distinct benefit that the data type natively fits to the
way it is modelled within the storage layer. Search algorithms can therefore be more efficient when
it comes to querying that data. NoSQL options can also allow for larger, or more complex, datasets to
be stored. In the case of document stores it removes the need to define a table(s) and so the data
model can evolve along with the data type.

This flexibility means that there can be reductions in development, loading and/or search times.
These savings require there has to be extra management layers to handle data that might not have
all the required fields, increased complexity in the definition of relationships, or limitations in the
way that data can be queried.

As the NoSQL options have been growing so have the ways of storing data within a traditional
relational database. There has been the introduction of fractal trees that allow for rapid indexing at
high insert speeds (TokuDB - ​https://www.percona.com/software/mysql-database/percona-tokudb)
and R-Trees [Guttman1984] allowing for indexing over geometries and rapid querying geometric
position. These enhancements when combined with the flexibility of relational data structures and
improvements to their underlying algorithms ensure relational databases continue to be a viable
storage layer option for many applications.

File based storage options have been extensively used in genomics for the rendering of tracks in
genome browsers and take advantage of the 1D nature of genomic annotation. Most notable are the
BAM format (​http://samtools.github.io/hts-specs/SAMv1.pdf ​), BigBed and BigWig [Kent2010]
formats and the Tabix [Li2011] format. These formats normally work by having input data sorted by
chromosome and start position. The input data is then compressed into chunks and index the
position of the chunks. These indexes are optimised for data retrieval by genomic location. There are
additional file formats that allow for the storage of large multidimensional arrays where it is possible
to query the data structure by the slicing of arrays. Formats that are currently being developed and
used with the scientific communities include HDF5 (​https://www.hdfgroup.org/ ​), ASDF
(​https://github.com/spacetelescope/asdf ​) and Blaze (​http://blaze.pydata.org/ ​). This means that file
based indexes are ideally suited to range based queries. File based indexes require wrappers to be
written for loading and retrieval, but they are often smaller and it is easy to distribute the files when
it is deployed on RESTful web servers.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

7/19

http://orientdb.com/
https://github.com/spacetelescope/asdf
http://samtools.github.io/hts-specs/SAMv1.pdf
https://www.percona.com/software/mysql-database/percona-tokudb
http://blaze.pydata.org/
https://www.hdfgroup.org/

Molecular Dynamics (MD) trajectories storing 3D coordinates are usually large files, in the order of
~GB, that are saved together with a topology file including information about the molecule (see
Annex section 8.2). Usually long trajectories are split in different files, to avoid having single huge
files that would be difficult to process in traditional computers. In the few existing MD databases,
different approaches have been used to store MD information. The older procedures (e.g. MoDEL,
Meyer et al., Structure 2010, 18, 1399-1409), tend to store trajectories in usual file systems (RAID
storage systems), and metadata (topology) in relational databases, whereas the newer
approximations (e.g. BigNASim [Hospital2016]) are already exploiting the power of NoSQL databases
presented before, storing metadata and analysis in document-oriented stores (e.g. MongoDB), and
cartesian coordinates in wide column stores (e.g. CassandraDB). Using wide column stores allows the
retrieval, in a very fast and efficient way, of trajectory coordinates corresponding to a certain slice of
time, and also trajectory coordinates for a certain set of atoms from the molecule. And using
document-oriented stores offers the flexibility required to store new analysis without the necessity
to modify the already existing schema.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

8/19

4 FILE MANAGEMENT

Within the VRE there is the loading, transfer, transformation and generation of a large number of
files. These files have sources, either external or internally based on other files within the system.
Tracking these files, who they belong to, the provenance and the way that the file was generated is
essential so the user is able to accurately describe how the data was generated during publication
and submission to archives. The DM API (​https://github.com/Multiscale-Genomics/mg-dm-api ​) was
written to help solve this issue.

The DM API is a data management API written to handle the tracking of files within the VRE along
with relevant metadata such that there are accurate records of how that information was generated.
The API is built to make it easy for developers to access the files that are required for running
pipelines without having to manage fixed file hierarchies within the filesystem. This should hopefully
avoid conflicts where two files have the same name and location.

4.1 Data Structure

For each file there is a set number of required parameters (Table 4.1). Extra parameters can be
defined to describe additional metadata. As a result the backend is ideally suited to a document store
style database. MongoDB (​https://www.mongodb.com​) was selected due to its maturity, schema
flexibility and prior experience of the database within the consortium. MongoDB’s flexibility is
essential when describing the metadata associated with each file. Our format allows for
user-dependent expansion of certain fields as and when required.

Parameter Required Description

user_id YES The unique user ID for who the file is associated with

file_id This is an auto-generated ID that is created when the data is entered.
The ID is unique to the file and the user.

file_path YES Location of the file either within the file system or a URL to an archive
or repository.

file_type YES File format. The current accepted file types are described in section 5.

data_type This describes the type of data that is in the file. This is helpful as there
are several formats that can have different data. For example FASTQ
data can be related to RNA-seq, MNase-Seq, ChIP-seq, WGBS, etc.

taxon_id YES The taxonomic ID of the species from which the sample data was
taken.

compressed Whether the file has been compressed. Type of compression used
depends on the format in question.

source_id List of the file IDs that were used during the creation of this file.

meta_data DEPENDENT There are cases where additional data is required for some files that is
not relevant to other file types. Files that have been generated and are
dependent on alignments require that the meta_data has an
‘assembly’ key with the assembly for which the alignment was made
against

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

9/19

https://github.com/Multiscale-Genomics/mg-dm-api
https://www.mongodb.com/

creation_time This is the time inserted by the API and is not required from the user.

Table 4.1:​ List of parameters stored by the data management API and whether these parameters are required

4.2 Validation

As part of the loading there is also a validation step. This is to ensure that the files that are loaded
have the required fields. This step also checks that if the files have particular data types then they
have the relevant matching metadata. In the case of the alignment file type BAM it is important to
also know the assembly accession of the genome that it was aligned against. It is important to know
which assembly as changes are frequently made, so retrieving alignments from a BAM file against the
wrong version of the assembly can have detrimental effects on the interpretation of the results.

4.3 Data Access

Access to the files is provided via a Python API. This allows for the querying of files for a given user by
file_id, file_type or taxon_id and allows for easily listing relevant files. Our API has been developed so
that a RESTful interface can be placed over the top for the retrieval and querying of files for external
services. Full documentation of installation and each of the methods can be found on ReadTheDocs
at ​http://mg-dm-api.readthedocs.io/ ​. ReadTheDocs automatically pulls any updates from GitHub and
updates the relevant sections of the documentation if changes have been made.

4.4 File Formats

There are a set number of file types that are used and/or generated by the pipelines within the VRE,
these have been listed below. Further descriptions about specific formats can be found in the Annex
in section 8.2

● FASTA
● FASTQ
● Bed / BigBed
● Wig / BigWig
● SAM / BAM
● GEM / bt2 / bwa
● GFF3
● CGmap / ATCGmap
● PDB
● xtc / NetCDF / mdcrd

● top / tpr / parmtop
● rst / cpt
● HDF5
● lif / tiff / png
● RData
● JSON
● txt
● tsv
● tar

Many of the file formats are specific to one data type, others are applicable to multiple data types
and pipelines hence the importance of the data type parameters to help describe the use of the file.
Files such as HDF5, JSON, tsv and txt are important formats for storing structured data that is
dependent on the pipeline that has generated it. The tar format is also used for the storage of
projects within the description of the VRE. This allows for multiples of files to get collated in a single
place when maintaining the hierarchy of a working directory.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

10/19

http://mg-dm-api.readthedocs.io/

5 FILE STORAGE AND INDEXING

There are many files that need to be tracked within the VRE all representing different stages along
the timeline from primary information loaded by the user to final results files. Within the results files
there are files that represent tracks to be loaded into genome browsers, 2D arrays of data or 3D
models and images. All need to be readily available so that they can be requested efficiently. In some
cases calling the whole file, or range of files, can be prohibitively expensive due to number or size, so
it is best to request just the information that is required. Being able to easily and quickly slice the
data without being too CPU or RAM intensive is essential for a responsive web data interface.

Of the files that are described in section 4.4 and Annex 8.2 there are several groups of files that have
different characteristics when it comes to data retrieval. There are images, where the relevant set of
images are returned on a per project basis. The second group relate to sequence aligned data where
the majority of requests revolve around searching for features that are present within a defined
region on a chromosome. The final set are modelling datasets containing identified structures or
simulated 3D models of chromosomes and/or molecules.

For image data it is best leaving this to the file system and the native compression of the relevant file
formats. At the moment the generation of images is the final step within the pipelines so that they
can be used for validation or representation of the results. Allowing the DM API to handle the
management of images and where they are located and the serving of the relevant information is
currently the best solution. This will be monitored for future changes in technology and whether
changes need to happen dependent on the volume of images that are loaded into the VRE. There are
options that are available outside of creating archives of sets of related files, including H5IM
(​https://support.hdfgroup.org/HDF5/doc/HL/RM_H5IM.html ​) files.

5.1 Sequence mapped data

Many of the pipelines produce BED, Wig, BAM, GFF/GFF3 or TSV files that represent features that are
mapped to a particular assembly. Hi-C pipelines also produce aligned data, but this is in the form of
an adjacency matrix. When visualising the data often the user will be focusing in on a particular
region of a single chromosome at a time. Returning a whole file would therefore be too slow to
return to a client and computationally prohibitive to process. It is essential to be able to request
genomic regions and transfer the pertinent subsection of data to the client. If more data is required,
additional requests can be made.

5.1.1 Sequence Features
Several methods were investigated for the indexing and retrieval of features for given regions. We
considered MySQL B-Trees, MySQL R-Trees, Cassandra (​http://cassandra.apache.org/ ​), ElasticSearch
(​https://www.elastic.co/ ​), HDF5 and BigBed/BigWig/Tabix files. This covers a range of SQL and NoSQL
options to try and provide the optimal balance between loading, search and retrieval.

Although Cassandra was a potential candidate it was limited by only being able to have a range filter
on a single column within the index and so was removed from further testing. For the rest of the
storage options testing was performed with a set of ~20,000,000 features derived from the
alignment of the dataset DRR000386 (​http://www.ebi.ac.uk/ena/data/view/DRR000386​) loaded 10
times to represent multiple files (200M features). The FASTQ was aligned to the GCA_000001635.2
(GRCm38/mm10) mouse assembly (​http://www.ebi.ac.uk/ena/data/view/GCA_000001635.2​) using
BWA [Li2009, Li2010]. Each of the FASTQ sequences are ~35bp in length. Table 5.1 shows the results
for trying to identify if there are features in a given region of dataset. Each requested region was

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

11/19

https://support.hdfgroup.org/HDF5/doc/HL/RM_H5IM.html
http://www.ebi.ac.uk/ena/data/view/DRR000386
https://www.elastic.co/
http://cassandra.apache.org/
http://www.ebi.ac.uk/ena/data/view/GCA_000001635.2

1Mb in size and was randomly generated to eliminate the effects of caching within the storage
engine or within the file system itself.

Out of the indexes analysed B-Tree, ElasticSearch and Indexed files can directly return the data in the
format of the input file (bed in this case). MySQL R-Trees and HDF5 are specially designed for
identifying which files have features in a given region. The reason for this secondary index is that
programs like BigBed, BigWig and Tabix are designed for the specific purpose of extracting tab
separated data from compressed files very efficiently. The limitation from a web perspective is that if
there are hundreds of files then many requests are required to be made over the internet to identify
if there are features present in a given file. Reducing these calls down to the bare minimum is
essential for a responsive application. We have developed a system that returns a list of files with
known data within a region allowing a client to request data from that relevant subset of files. Based
on the query times this shows that the optimal setup would be to use the HDF5 index and then
iterate through the indexed files with BigBed to extract the required data. When using BigBed to
retrieve the region from the 10 files it takes 0.1sec. This shows that a mixture of HDF5 to identify
relevant files and indexed files are ideally set to act as a backend for a responsive RESTful interface.

Index Description Rows Index

size

Query

Time

B-Tree Contains all information from the bed file 206M 30GB 124sec

R-Tree This is a geometric index on the position 190M 30GB 0.35sec

ElasticSearch Range query returning JSON matching the
bed file

133M 20GB 0.5sec

HDF5 Identifies which files have features within
a given range on a base by base case

na 2GB 0.047sec

Indexed File BigBed file 20M x 10 9.3GB 0.05sec

Table 5.1​: Indexes compared and the data that they stored. Each request was for a 1Mb region and queries
were performed 1000 times. The values represent mean execution times for each technology.

One of the issues to also consider when indexing data is that there is the size of the original data file
and the the size of the index. Ideally you do not want the index to be prohibitively large. The size of
the uncompressed initial bed file is 1.1GB, resulting in 11GB for 10 duplicate files as part of the test
loading. In the case of MySQL (B and R trees) and Elastic Search the sizes of the index were at least
twice the size of the original test dataset. This would mean that there would need to be 3 times the
storage requirement for each file to accommodate the file and matching index. With the indexed files
and HDF5 location file there is only 2 times the storage required as the indexes are roughly the same
size as the original data.

Based on the results in Table 5.1 for each of the indexing methods the mg-process-files pipelines
(​https://github.com/Multiscale-Genomics/mg-process-files ​) have been developed. These pipelines
provide tools to index BED, WIG and GFF3 files with BigBed, BigWig and Tabix respectively and then
use HDF5 files to index which files have features for a given region. There have also been readers
added to the DM API for reading BigBed, BigWig, Tabix and HDF5 position index files. Interaction with
the BigBed and BigWig files uses the pyBigWig module (​https://github.com/dpryan79/pyBigWig​) to
read the files. To create the BigBed and BigWig files we use the bedToBigBed and wigToBigWig

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

12/19

https://github.com/Multiscale-Genomics/mg-process-files
https://github.com/dpryan79/pyBigWig

executables from UCSC (​http://hgdownload.soe.ucsc.edu/admin/exe/ ​). Loading and querying HDF5
files uses the h5py module (​http://www.h5py.org/ ​) and GFF3 indexing with Tabix is done using the
pysam module (​https://github.com/pysam-developers/pysam​).

5.1.2 Adjacency Matrixes
These are a special case of range request data which is a value between 2 positions on a
chromosome, therefore it is not possible to model within the same format as sequence feature. It
also has the additional complexity of the results needing to be calculated for different resolutions
and that interactions are sparsely distributed. This is ideally suited to HDF5 files that are designed for
handling large, sparse, multidimensional arrays of data and returning only slices of information. This
has similar characteristics to the requesting of data from the HDF5 files in 5.1.1. There is the added
advantage that these files are compressed and can be easily duplicated if there needs to be
horizontal scaling of the RESTful interfaces.

5.2 3D Structures

5.2.1 3D Models

TADbit is able to generate 3D models of fragments of the chromosome [Serra2016]. TADbit outputs
multiple models per fragment, where the number of fragments is dependent on the resolution level
(1kbp, 10kbp, 100kbp, etc). For each set of models there is a JSON file describing the coordinates for
the fragment, a hierarchical clustering of the models including information about which models are
the most representative. There is also the matching section of the adjacency matrix embedded
within the JSON document. This 3D coordinate data, plus the matching metadata, can get easily
stored within a single HDF5 file. This has the advantage that the data can be directly accessed via a
python API without requiring all of the JSON files to be generated on the fly, or pre-generated and
stored in a zipped archive that would require unzipping.

A pipeline has been written to convert the fully generated set of models into a single HDF5 file. The
pipeline is part of the mg-process-files repository, there is also a matching HDF5 file reader included
in the DM API.

Smaller nucleic acids and chromatin structures can also be modeled from a sequence in the VRE. In
this case, the generated file is stored in PDB format, for 2 main reasons: 1) because it is a relatively
small file (single structure), and 2) for compatibility with different tools (visualizers and analysis
tools).

5.2.2 Trajectories
Molecular Dynamics trajectories generated in the VRE are stored in different file formats (see Annex
section 8.2). When available, binary files (xtc, netcdf) are prefered, because of the reduced file size.
However, for compatibility with some of the analysis tools, ASCII-formatted trajectory files (mdcrd,
PDB) are also being accepted.

Nucleic acids MD trajectories stored in the BigNASim database will be available through the DM API,
exploiting the direct access possibilities offered by the NoSQL platform (see section 3 and reference
[Hospital2016]). This will allow the direct retrieval of trajectories and slices of trajectories (both in
time and in molecule parts) to the VRE user workspace. The feasibility of using this non-relational
approach with MD or CG trajectories computed in the VRE, with a post process by a pipeline
following the steps of the work presented for the sequence features (section 5.1.1) will be studied.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

13/19

http://hgdownload.soe.ucsc.edu/admin/exe/
http://www.h5py.org/
https://github.com/pysam-developers/pysam

5.3 Project Storage Within The VRE

MuG VRE is the web-based interface through which the user interacts with MuG data. MuG VRE is a
data-centric interface. It should take information from files, and generate the appropriate
environment to visualize or to include them in further analysis. Users can load or create their own
data, import it from archives (PDB [Berman2000], BigNASim [Hospital2016], ArrayExpress, ENA), or
generate new files resulting from tool and pipeline executions. The DM API is used to track the
evolution of these files, as well as to find and update their metadata. This metadata helps the VRE to
define the particulars of each file, for instance, to annotate the pipeline from which a file comes
from, the set the reference genome assembly of a sequence file, or the establish dependent
relationships between a BAM file and its index file (BAI). VRE efficiently queries DM files and display
their attributes to the end user, but it also takes advantage of the provenance and the semantic
definition of the data to suggest suitable tools, pipelines and visualizers given a file or set of files.

Files in the VRE are organized in projects, groups of files generated by a particular tool or pipeline
execution. In the DM model, projects are identified as a particular case of file whose metadata
includes the list of all the files that belong to that project, as an additional attribute. In this way , a
layer of hierarchy is added for rapidly identifying those interconnected files that, for instance, can be
reused all together to launch a new tool execution. These projects are visualized by VRE users as file
folders, and in fact, in the file system, the project level corresponds to the working directory where
the tool is being executed.

Physically, VRE files are stored in a local repository, a shared disk accessible both, from the VRE
instance of the infrastructure, and from the cloud where tool virtual machines are deployed. Yet, the
access to such files can also be remote via a RESTful interface which allows the file manipulation from
other MuG infrastructures, setting the basis for a true distributed working environment.

5.4 Archives

Within the VRE there is a working level of persistence for files, for long term storage of results then
the files should be loaded to the relevant archival services. In the case of sequence reads these
should be loaded into the European Nucleotide Archive (​http://www.ebi.ac.uk/ena - ENA)
[Cochrane2015] where they can be accessioned, stored and distributed. For image data there is the
new BioImage service where imaging data, irrespective of source, can be stored and viewed. For
nucleic acids MD data, there is the BigNASim database [Hospital2016], not only storing coordinates
information but also automatically computing and making available a set of flexibility analysis from
the trajectory. Each of these services are able to operate in a private mode so that the data can get
loaded and used within the VRE, but can then be easily made publically available upon the point of
publication. The BioStudies service can then be used to group together disparate sets of data that
form part of the same study with links to ENA, BioSamples [Faulconbridge2014], PDB [Berman2000],
etc.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

14/19

http://www.ebi.ac.uk/ena

6 CONCLUSIONS

The data management APIs and new pipelines have been designed to be deployed within the
COMPSs environment so that they can be easily integrated within the VRE. The pipelines, as with
those developed for D4.3, have been designed with the principles of D6.1 in mind. As a result it is
possible to efficiently track the progression of a file through workflows within the VRE. On top of the
data management, the DM API provides methods for searching the data stored to identify relevant
files by various parameters (eg: file type) but also receive a full history of a file and identify the
progression from the primary data to the current file.

Where there are files that are more likely to get dynamically requested, involving on the fly slicing of
the data, there have been pipelines put in place to implement standard technologies to allow for the
quick retrieval of information. The purpose of these sequence feature mapped index files is to reduce
the number of requests when there are a large number of potential files. The indexing of the results
files has been targeted in a way to optimise the major modes of access that a user will take for
retrieving information. In the case of the 3D models these indexes are not only based on returning
the relevant models from a given region, but also identifying which of the models are the most
representative of the set of potential models.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

15/19

7 REFERENCES

[Berman2000] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov,
I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucl. Acids Res. ​28​, 235–242.
https://doi.org/10.1093/nar/28.1.235

[Cochrane2015] Cochrane, G., Karsch-Mizrachi, I., Takagi, T., & Sequence Database Collaboration, I.
N. (2015). The International Nucleotide Sequence Database Collaboration. Nucleic Acids Research,
gkv1323. ​https://doi.org/10.1093/nar/gkv1323

[Faulconbridge2014] Faulconbridge, A., Burdett, T., Brandizi, M., Gostev, M., Pereira, R., Vasant, D.,
Sarkans U, and Parkinson H (2014). Updates to BioSamples database at European Bioinformatics
Institute. Nucleic Acids Res 42, D50-2. ​https://doi.org/10.1093/nar/gkt1081

[Guttman1984] Guttman A. (1984). R-Trees: A Dynamic Index Structure For Spatial Searching.
Proceedings of the 1984 ACM, SIGMOD84, 47-57. ​http://doi.acm.org/10.1145/602259.602266

[Hospital2016] Hospital, A., Andrio, P., Cugnasco, C., Codo, L., Becerra, Y., Dans, P.D., Battistini, F.,
Torres, J., Goñi, R., Orozco, M. & Gelpí J.L. (2016). BIGNASim: a NoSQL database structure and
analysis portal for nucleic acids simulation data. Nucleic Acids Res 44, D272–D278.
http://doi.org/10.1093/nar/gkv1301

[Kent2010] Kent, W.J., Zweig, A.S., Barber, G., Hinrichs, A.S., and Karolchik, D. (2010). BigWig and
BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207.
http://doi.org/10.1093/bioinformatics/btq351

[Langmead2012] Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nature Methods, 9(4), 357–359. ​https://doi.org/10.1038/nmeth.1923

[Leinonen2011] Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tárraga, A., Cheng, Y., ​et al
(2011). The European Nucleotide Archive. Nucleic Acids Research, 39(suppl 1), D28–D31.
https://doi.org/10.1093/nar/gkq967

[Li2009] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ​et al (2009). The Sequence
Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079.
https://doi.org/10.1093/bioinformatics/btp352

[Li2010] Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics, 26(5), 589–595. ​https://doi.org/10.1093/bioinformatics/btp698

[Li2011] Li H (2011). Tabix: fast retrieval of sequence features from generic TAB-delimited files.
Bioinformatics 27, 718–719.

[Marco-Sola2012] Marco-Sola, S., Sammeth, M., Guigó, R., & Ribeca, P. (2012). The GEM mapper:
fast, accurate and versatile alignment by filtration. Nature Methods, 9(12), 1185–1188.
https://doi.org/10.1038/nmeth.2221

[Serra2016] Serra, F., Baù, D., Filion, G., & Marti-Renom, M. A. (2016). Structural features of the fly
chromatin colors revealed by automatic three-dimensional modeling. bioRxiv, 36764.
https://doi.org/10.1101/036764

[vanSteensel2010] van Steensel, B., & Dekker, J. (2010). Genomics tools for unraveling chromosome
architecture., Genomics tools for the unraveling of chromosome architecture. Nature Biotechnology,
Nature Biotechnology, 28, 28(10, 10), 1089, 1089–1095. ​https://doi.org/10.1038/nbt.1680

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

16/19

https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/nar/gkq967
http://doi.org/10.1093/nar/gkv1301
http://doi.org/10.1093/bioinformatics/btq351
https://doi.org/10.1038/nmeth.1923
http://doi.acm.org/10.1145/602259.602266
https://doi.org/10.1038/nbt.1680
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1038/nmeth.2221
https://doi.org/10.1093/nar/gkv1323
https://doi.org/10.1101/036764
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/nar/gkt1081

8 ANNEXES

8.1 Abbreviations

DAC: Data access committee

EGA: European Genome-phenome Archive

ENA: European Nucleotide Archive

FISH: Fluorescence ​in-situ ​ hybridisation

MINSEQE: Minimum Information about a high-throughput Sequencing Experiment

OME: Open Microscopy Environment

PDB: Protein Data Bank

SRA: Sequence read archive

VRE: Virtual Research Environment

WGBS: Whole Genome Bisulphate Sequencing

8.2 File Formats

8.2.1 FASTA
https://en.wikipedia.org/wiki/FASTA_format

File format for storing sequences (nucleic or peptide) The file consists of a series of entries with a
header line beginning with a ‘>’ followed by a stable identifier and any other header parameters. This
is followed on the line(s) below with the sequence. There can be multiple sequences in a single file

8.2.2 FASTQ
https://en.wikipedia.org/wiki/FASTQ_format

File format for storing sequences reads (predominantly from high throughput sequencing methods)
along with the quality score for each base call. The file consists of 4 lines containing the identifier, the
sequence, a description and the quality encoded as a full range of ASCII characters. Derives from the
earlier FASTA format.

8.2.3 SAM / BAM
https://samtools.github.io/hts-specs/SAMv1.pdf

SAM is a text based file format for representing a sequence aligned to a reference assembly genome.
BAM is a binary compressed and indexed version of a SAM file. Format support is provided by the
samtools group who work as part of the Data Working Group of the Global Alliance for Genomics and
Health.

8.2.4 GFF3
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

File format for describing generic features that exist on a given genetic sequence. These features can
consist of a minimum of a single base, but can also be on the forward or reverse strand. The features
can also have additional attributes and a matching score.

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

17/19

https://samtools.github.io/hts-specs/SAMv1.pdf
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTQ_format

8.2.5 BED / BigBed
https://genome.ucsc.edu/FAQ/FAQformat#format1

The Browser Extensible Data (BED) format contains the genomic locations of features within the
genome. BED is a format where data points are separated by whitespace in text files. The format
defines three predictable columns namely chromosome, start and end allowing it to represent most
genomic annotations. BED variants may choose to expand the number of columns available to help it
represent more complex features such as transcription models. A binary indexed version of this
format is available called BigBed providing fast access to genomic location based queries. Format
support is primarily provided by the UCSC genome browser group.

8.2.6 WIG (Wiggle)
https://genome.ucsc.edu/goldenpath/help/wiggle.html

Text based file format for associating a numeric value to a given region of position on a reference
genome. Wiggle files appear in two formats; fixedStep (for regular data intervals) and variableStep
(for irregular data intervals). A binary indexed version of this format is available called BigWig.
Format support is primarily provided by the UCSC genome browser group.

8.2.7 CGMap and ATCGMap
https://github.com/BSSeeker/BSseeker2/blob/master/README.md

This is a file format for disseminating methylome data [Guo2013]. Both files includes the CpG and
CpH sites. The ATCGMap also includes the positions of all features for all bases on both strands.

8.2.8 HDF5
https://support.hdfgroup.org/HDF5/

A file format designed to handle large data arrays. The file can handle the multiple sparse arrays
easily in a very compressed format. Manipulation of records stored in this format must be handled by
dedicated libraries.

8.2.9 JSON
http://www.json.org/

File format used to handle attribute-value pairs in a semi-human readable way. Derives from
JavaScript, but is openly accessible by a large number of programming languages. Due to its flexibility
in representing any data schema and ubiquitous language support JSON is used as a fast way to
deliver data to a client browser (Chrome/Firefox/Edge) or to server processes over RESTful APIs.

8.2.10 PDB
http://www.wwpdb.org/documentation/file-format

Plain text file format for the representation of 3D molecular structures. The format has reached a
stable point and was frozen in November 2012.

8.2.11 xtc / NetCDF / mdcrd
http://ambermd.org/formats.html#trajectory

http://manual.gromacs.org/online/xtc.html

Molecular Dynamics (MD) and Coarse-Grained (CG) trajectory files, containing cartesian 3D
coordinates (x,y,z) information for all the elements (usually atoms) of a molecule for all the snapshots

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

18/19

http://manual.gromacs.org/online/xtc.html
http://ambermd.org/formats.html#trajectory
https://genome.ucsc.edu/FAQ/FAQformat#format1
https://github.com/BSSeeker/BSseeker2/blob/master/README.md
https://support.hdfgroup.org/HDF5/
http://www.wwpdb.org/documentation/file-format
http://www.json.org/
https://genome.ucsc.edu/goldenpath/help/wiggle.html

in a particular time slice. NetCDF (binary) and mdcrd (ASCII) are specific for AMBER MD package,
whereas xtc (binary) is specific for GROMACS MD package.

8.2.12 top / tpr / parmtop
http://ambermd.org/formats.html#topology

http://manual.gromacs.org/online/top.html

http://manual.gromacs.org/online/tpr.html

Molecular Dynamics (MD) and Coarse-Grained (CG) topology files, containing information about the
molecule such as number of elements (usually atoms), type, name, bonds, angles, dihedrals, etc.
They are indispensable to analyse and visualise trajectories stored in the formats presented in the
previous section. Top (ASCII) and tpr (binary) are specific for GROMACS MD package, whereas
parmtop is specific for AMBER MD package.

8.2.13 cpt / rst
http://ambermd.org/formats.html#restart

http://manual.gromacs.org/online/cpt.html

GROMACS (cpt) and AMBER (rst) checkpoint and restart files used in molecular modelling
simulations. They allow to extend a trajectory from the last snapshot computed, and also to restart a
simulation from the last snapshot computed after a crash.

8.2.14 GEM
http://algorithms.cnag.cat/wiki/The_GEM_library

GEM is a binary index file format for use indexing assemblies to aid in the alignment of FASTQ data
[Marco-Sola2012].

8.2.15 Bowtie2 Index
http://bowtie-bio.sourceforge.net/bowtie2

This consists of 6 files type (.1.bt2, .2.bt2, .3.bt2, .4.bt2, .rev.1.bt2, .rev.2.bt2) that are used for the
alignment of high throughput sequencing reads to a given genome assembly.

8.2.16 BWA Index
http://bio-bwa.sourceforge.net/

This actually covers 5 file types that describe the index (amb, ann, bwt, pac, sa). These are used for
the alignment of high throughput sequence reads to a given genome assembly

H2020-EINFRA-2015-1- 676556
Deliverable 4.4 – Database and ETL design and implementation

19/19

http://manual.gromacs.org/online/cpt.html
http://algorithms.cnag.cat/wiki/The_GEM_library
http://bowtie-bio.sourceforge.net/bowtie2
http://bio-bwa.sourceforge.net/
http://manual.gromacs.org/online/top.html
http://manual.gromacs.org/online/tpr.html
http://ambermd.org/formats.html#topology
http://ambermd.org/formats.html#restart

