

Project Acronym: ​MuG

Project title:​ Multi-Scale Complex Genomics (MuG)

Call​: H2020-EINFRA-2015-1

Topic​: EINFRA-9-2015

Project Number​: 676556

Project Coordinator​: Institute for Research in Biomedicine (IRB Barcelona)

Project start date​: 1/11/2015

Duration​: 36 months

Deliverable 6.1: Design of computational architecture of software

blocks

Lead beneficiary​: University of Nottingham

Dissemination level​: PUBLIC

Due date: 31/10/2016

Actual submission date: 31/10/2016

Copyright​©​ 2015-2018 The partners of the MuG Consortium

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 676556.

Ref. Ares(2016)6211400 - 31/10/2016

Document History

Version Contributor(s) Partner Date Comments

0.1 Josep Ll. Gelpi

Rosa Badia

Pau Andrio

BSC 15​th​ Jul 2016 First draft

0.3 Marco Pasi

Charles

Laughton

UNOT 23​rd​ Aug 2016 Version 0.3

0.4 Marco Pasi UNOT 26/10/2016 Final details

1.0 - - 31/10/2016 Final version approved by
technical and supervisory
boards.

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

2/11

Table of Contents

1 EXECUTIVE SUMMARY

2 BACKGROUND

3 SOFTWARE REQUIREMENTS

4 ARCHITECTURE PROPOSAL

4.1 Software blocks

4.2 External Data Access

4.3 Data Interoperability

4.4 Workflow Management

4.5 Verification and Benchmarking

5 REFERENCES

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

3/11

https://docs.google.com/document/d/1zUwTAWUn_lTmf7t-X8rXPuZHrhnAkyucwq_DM4Q34rg/edit#heading=h.30j0zll

1 EXECUTIVE SUMMARY

The MuG VRE aims to provide an integrated software environment for researchers in the field of
multiscale complex genomics, by facilitating the access to large-scale heterogeneous data and to
high-performance software tools, ultimately to rationalise and speed up the scientific process
towards understanding the 3D structure of the genome. This document sets the requirements and
specifications for the software architecture of the tools section of the VRE, in particular taking into
account the heterogeneous needs of the wide potential user community and the technical
necessities for data integration and software interoperability and sustainability.

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

4/11

2 BACKGROUND
The Multiscale Complex Genomics (MuG) VRE aims to provide an integrated software environment
to fulfil the needs of the research community around the 3D structure of the genome. This is an
enormous task as types of data involved range from sequence and annotation data, through either
atomistic or coarse-grained simulation data, to high level experimental data like HiC, or FISH.
Defining a Data model itself is the initial challenge (see D3.1, and D4.1). A data model should allow
to connect the various levels of complexity involved and allow to browse them using a single
coordinate system. Tools are the second, and complementary challenge. Although the amount of
analysis software built on the different levels of genomics studies is large, there is no previous
attempt to build a fully interoperable software suite that supports the integration of the data
levels considered in MuG. Interoperable platforms are however not new to genomics. In fact, there
is already a general agreement in the community about the need of discovering and accessing data
and tools, using a unified and standardized environment [1], and there exist already a number of
initiatives to provide and support access to bioinformatics tools [2-7]. A fully interoperable
scenario requires a number of components: Common data ontologies providing both
machine-readable data type definitions and semantics; service registries allowing easy discovery;
and a process management software. In the present scenario, and through the impulse of the
ELIXIR initiative [8], projects like EDAM ontology [9], a product of the effort made in the EMBRACE
project [10], BioXSD [11], or the Elixir tools catalogue [12] seek to configure a fully interoperable
environment for Bioinformatics. However, although this initiative is expected to succeed, it is still
far from being a reality. Fortunately MuG VRE does not require to define a universally accepted
standard, however it does need to fulfil the requirements of such interoperable scenario within
MuG software offer. In any case, the design will align with general interoperability
recommendations promoted in the Elixir infrastructure.

This document will describe a proposal of software architecture designed in such direction,
taking into account that MuG data model is still under development (WP3 and WP4). The proposal
will be also aligned with the implementation prototype provided in D5.1 (WP5)

3 SOFTWARE REQUIREMENTS
The main requirement of MuG software stack will be to provide a software architecture to
efficiently use the analysis modules and tools generated by WP6, consuming and producing data,
according to the models designed in MuG WP4. The summary of the requirements of such
software architecture follows:

1. Modular architecture. Tools should be orchestrated as modules of a well-defined
functionality with a fully defined input and output data specification. This will allow to
encapsulate analysis workflows in a flexible and reusable manner, with minimal
programming overhead.

2. Interoperable modules. A modular approach cannot be useful unless input and output
data are fully compatible, in a way that modules can be freely interconnected in larger
workflows without recoding. Full interoperability will require to build a complete data
description ontology. The software architecture should take into account eventual changes
or evolution of data models, allowing adaptation with minimal programming work. Data
interchange through disk and memory should be available.

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

5/11

3. Module functionalities. MuG will cover a large number of already existing bioinformatics
functionalities that have not been necessarily conceived to interoperate with each other.
Additionally, it is not realistic to think of recoding existing software to address specific MuG
requirements. Software modules should, then, allow to use existing software, run in its
most efficient environment, and allow eventually the use of existing parallelization
solutions.

4. Grouped operations. A modular design is normally implemented building small modules
with well-defined functions. However, some workflows representing more complex
operations are usually run as single blocks. The software design should allow to prepack
complex workflows as a second level of reusable building blocks. This will allow to optimize
internally such workflows in the most appropriate manner.

5. Module and workflow configuration. Most software modules will encapsulate existing
tools with a large number of configuration options. To appropriately setup such tools, a
uniform, both for modules and workflows, configuration mechanism should be provided.
Default options should be provided to allow a reasonable use for non-experts.

6. Workflow management. The architecture of software modules should be compatible with
the chosen workflow management system, and allow to execute the workflows in a
number of computer environments (desktop for testing purposes, virtualized
environments, and HPC).

7. Data Access. In the genomics and structural fields, access to data public repositories is key.
There is a growing agreement on the use of RESTful services to provide data. Software
design should include the necessary modules to obtain data from the MuG relevant
repositories (IRB and EMBL-EBI) through the use of such technology.

8. Installation & Documentation. ​MuG software suite will be the engine supporting the
back-end of the central MuG browser and data repository. However, it is not unreasonable
that the complete suite or parts of it (given its modular nature) should be installed in other
places. This will allow to extend the functionality to, for instance, private or sensitive data
repositories. In consequence, a reasonable installation, and verification protocol should be
provided. Also, installation and use of the software should be fully documented, and
testing data sets available.

4 ARCHITECTURE PROPOSAL
The indicated requirements can be fulfilled with a number of possible solutions, with different
programming languages and data supports. Most of these solutions are equally efficient, and
choosing among them is usually matter of personal preferences. The proposal of software
architecture for the MuG project is based in a number of pre-existing conditions relating both to
the perceived needs of the VRE user community and to the partners’ expertise and tradition. In
particular, the following has been taken into account:

1. Software architecture of the underlying tools is varied (programming languages from
FORTRAN to C++, specialized languages like R, and scripting languages including Perl,
Python, and others). As a general case, it has been considered that the underlying tool will
be called through a single command line with appropriate options, either in the command

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

6/11

line or as a configuration file. Other scenarios are also envisaged (see next section), to
facilitate the integration of a wide range of tools in order to meet the needs of the user
community.

2. Raw data will be available either as disk files, in the native format generated by data
providers (ex. PDB or FASTA formats), or obtained from a RESTful service (IRB or
EMBL-EBI).

3. The preferred task manager will be BSC’s COMPSs programming model (in particular its
Python binding PyCOMPSs).

Figure 1.​ Global schema of the software architecture

4.1 Software blocks
The basis of the MuG software infrastructure would be a series of building blocks organized as a
library of modules, encapsulating the necessary functionalities. Following the above
considerations, modules will be generated as configurable Python objects wrapping the original
software. Interaction with the underlying software will be through command line execution, or,
when appropriate, through a specific Python API provided by the software. This ensures that the
original software can be kept untouched, minimizing installation and configuration issues. Besides,
parallelization strategies already available in such applications can also be used when appropriate.
In general terms, wrappers will expose tasks and their dependencies, such that the underlying
computational infrastructure can optimise their execution. Our task-based strategy for parallelism
is commonly used in a number of runtime environments for high-performance computing (for
example, see the RADICAL Pilot project [8], the Extasy project [9], and the recently developed
Intel® Threading Building Blocks [10]).

Configuration of the modules will be made through YAML/JSON scripts (see an example in
Figure 2). Wrappers will take care of interpreting configuration scripts and translate the setting to
the execution command line. This configuration strategy will allow to maintain a stable interface

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

7/11

even in the eventual modification of the internal applications, and will hide this complexity to the
users. Default configuration schemas will be provided, in a way that non-expert users could
execute software with a set of recommended settings.

The functionality of software blocks would be kept to single operations, typically with a
minimum set of input data items, and a single output data item, thus maximizing the modularity,
flexibility and interoperability. However, it can be foreseen that some sets of operations will be
usually performed as a block. In those cases, it is reasonable to build higher level blocks, including
a more complex pipeline, made itself from the combination of simpler blocks. These pipelines will
be organized in the same way and will offer a similar interface and configuration strategies than
simpler blocks.

Figure 2.​ Examples of configuration files.

An important issue when combining different applications is the compatibility of their
software environments (preferred operative systems, system libraries, etc.). It is not reasonable to
think that a relatively complete software library as planned for MuG, will be possible in a single
software environment. Virtualization is the usual strategy to address these issues. Depending on
the specific requirements, we will use Docker containers to encapsulate operations that require a
complex system setup. Dockerized applications can be easily run through a simple command line,
and even though they can encapsulate complex systems, they will still be compatible with the
wrappers. The complete library or part of it would be also encapsulated in either virtual machines
or Docker containers for distribution or execution in other environments.

Based on these considerations, software blocks that implement Tools within the VRE are
defined by the following four parameters or features:

1. Functionality: ​The specific functionality that the tool provides, should match the
envisaged use cases within the field of multiscale complex genomics.

2. Required Input Data: ​The type (or types) of data that the tool requires as input in
order to perform its function; these should be only valid data types, as defined in
the MuG Data Management Plan (see D4.2 and Section 4.3).

3. Resulting Output Data: ​The type (or types) of data that the tool produces as a
result of its execution; the same limitations apply here as for inputs, ensuring that
tools can be easily combined into workflows.

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

8/11

4. Type of integration within the VRE: ​Details of how the tool is integrated within the
VRE, including specific information about its execution environment requirements
and dependencies.

Workflows (i.e. sets of Tools to be run in a specific order) will also be defined in a similar way. It is
important to note that abstracting the definition of a tool to these four simple features is a
significant step towards making the software architecture of the VRE robust to future changes,
thereby improving its long-term sustainability.

4.2 External Data Access
Operations required in MuG will make extensive use of data repositories, either public ones like
Ensembl, ENA, EGA, PDB, Uniprot, BIGNASim or those generated within the MuG project. Whereas
the internal structure of such repositories is diverse, there is a general agreement in using RESTful
interfaces to access data, and most of them provide or will provide such interfaces. MuG software
library will include specific modules to access such services, and eventually adapt the data to the
internal data representation. Additionally, a RESTful interface to access MuG internal data will be
generated following the appropriate recommendations (See DMP D4.1 and D4.2).

4.3 Data Interoperability
The whole design of a modular software library requires to ensure the complete interoperability of
the modules. The use of common types of interface is the first step. MuG software modules will be
used through Python scripting and will receive input and output data using the Python object
schema, either with in-memory objects or serialized for disk based storage. The use of other data
formats will be restricted to the internal applications and hidden from the external usage of the
modules. A more relevant issue is the design of a common data type schema covering all data used
by software modules. This does not mean that a single data model for all levels (see D3.1) of MuG
data should be established. Instead, the most appropriate data model for each level will be chosen.
The integration of such models will ensure the interoperability: compatibility within the
description of molecular entities from atomistic to coarse-grained levels, common genomic
coordinates, etc.

4.4 Workflow Management
As indicated above, workflow management will be based in PyCOMPSs, the Python binding of
COMPSs programming model. COMPSs allows to exploit implicit parallelism in task-oriented
workflows at run-time, and is able to control virtualized systems following the need of the
workflow in a dynamic manner. COMPSs provides a run-time environment for clusters, large HPC
systems, and also grid and cloud systems, including clusters managed by Docker technology.
PyCOMPSs syntax is based on the use of decorators that indicate to the COMPSs run-time which
methods will become tasks (nodes in the workflow). The use of Python modules will allow to
define any complex workflow just as a Python script that will call MuG modules as internal tasks.
Workflows could be configured using the same YAML/JSON procedure as modules, in a way that a
single file will manage the configuration of the individual modules and the complete workflow.

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

9/11

4.5 Verification and Benchmarking
Integration of external software in the VRE, especially in cases where complex installation
processes are involved, will require a final step to assess that the software is executing correctly
within the MuG computational infrastructure. This step should ensure that the software ​(i) is
producing the correct output, ​(ii) with the expected performance: both aspects are of fundamental
importance in order for users to confidently and efficiently use the VRE. We envisage two
scenarios in order to achieve this, which are described in the following.

It is widely considered as good software development practice to include in a software
package a ​test suite to automatically verify correct execution, which administrators are advised to
run in order to test the installation: this will be the preferred verification strategy for those
packages where such a feature is available. Alternatively, developers often provide example
outputs of their software packages, either bundled with the software or available on a web page.
MuG administrators will evaluate correct execution comparing the VRE outputs to these standard
outputs in cases where these are available, and possibly negotiate with external software
developers to make standard outputs available. Even in these cases, VRE users may wish to further
assess themselves the output of tools; in fact, during an initial requirement survey carried out
within the MuG project [11], it was pointed out by several prospective users that the VRE should
include multiple tools with similar or identical functionality, in order to leave the freedom of choice
to the user. The presence of multiple equivalent tools within the VRE would allow MuG
administrators to assess correct execution by comparison, in those cases where this is applicable.

5 REFERENCES
1. Stein L. Creating a bioinformatics nation. Nature 2002;417(6885):119–120.

2. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, et al. BioCatalogue: A

universal catalogue of web services for the life sciences. Nucleic Acids Res 2010; 38(Web

Server):W689-W694.

3. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman D, et al.

myExperiment: a repository and social network for the sharing of bioinformatics

workflows. Nucleic Acids Res. 2010; 38 (Web Server):W677–W682.

4. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M, Li P, Oinn T Taverna: a tool for

building and running workflows of services. Nucleic Acids Res 2006; 34:729-732.

5. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting

accessible, reproducible, and transparent computational research in the life sciences.

Genome Biol. 2010;11:R86.

6. BioMoby Consortium, Wilkinson MD, Senger M, Kawas E, Bruskiewich R, Gouzy J, et al.

Interoperability with Moby 1.0 - It's better than sharing your toothbrush! Brief. Bioinform.

2008; 9(3):220-231.

7. Repchevsky D, Gelpi JL. BioSWR – Semantic Web services Registry for Bioinformatics PLoS

ONE 2014; 9(9): e107889.

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

10/11

8. http://radical-cybertools.github.io/radical-pilot

9. http://www.extasy-project.org/

10. https://www.threadingbuildingblocks.org/

11. Report for the internal consulation IC6.0, available on the MuG website.

H2020-EINFRA-2015-1- 676556
Deliverable 6.1: Design of computational architecture of software blocks

11/11

http://radical-cybertools.github.io/radical-pilot
http://www.extasy-project.org/
https://www.threadingbuildingblocks.org/

