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1 EXECUTIVE SUMMARY 
Protein-DNA interactions play a fundamental role in shaping the regulatory processes in the cell.              
The integrative approach that the MuG VRE aims to implement has the potential of overcoming               
many of our limitations in understanding and predicting these interactions, and ultimately to             
understand chromatin structure and gene expression regulation. In this document we define, with             
sustainability in mind, which tools to predict and analyse protein-DNA interactions will be initially              
available in the MuG VRE, with particular attention to ​(i) what data will be retrieved and stored in                  
the data repositories, and exchanged among tools, as well as to ​(ii) how the tools will be                 
integrated in the computational infrastructure of the VRE. 
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2 INTRODUCTION 
It has become clear in recent years that many human diseases are caused by malfunction               

in the complex intracellular processes that regulate gene expression; these include cancer,            
cardiovascular disease, diabetes, autoimmunity, neurological disorders, and obesity [Lee 2013].          
Our ability to devise effective treatments for some of these conditions is greatly limited by our                
poor understanding of gene regulation and transcriptional control. DNA-binding proteins play a            
fundamental role in these processes, and in particular transcription factors (TFs) regulate the             
expression of specific genes by binding with high affinity to their “consensus” sequence (the TF               
binding site or TFBS, e.g. promoters or enhancers). 

Unraveling the molecular details of TF sequence specificity is a major challenge in             
deciphering the spatiotemporal gene expression patterns that sustain life at the cellular level.             
However, very early structural information available on protein-DNA complexes made it clear that             
it is impossible to define a simple code for protein-DNA binding, based exclusively on contacts               
between specific amino acid side chains and specific DNA bases [Luscombe 2000, Jen-Jacobson             
2000, Garvie 2001, Matthews 1998]. Although predictive models that rely exclusively on DNA             
sequence have been successful in a large number of cases [Stormo 1982, Stormo 2013], these are                
unable to account for a variety of structural and dynamic factors that affect the binding affinity                
[O’Flanagan 2005], but are difficult to predict from DNA sequence alone. These effects are often               
collectively referred to as “indirect readout” [Lavery 2005, Sarai 2005], in contrast to “direct              
readout” which instead depends directly upon sequence, and their understanding requires           
detailed knowledge of the structure and flexibility of both interaction partners. To complicate             
things further, both theoretical and experimental studies have shown that protein-DNA interfaces            
are highly dynamic [Zandarashvili 2013, Chen 2015, Etheve 2015], and therefore a single structure              
is often insufficient to analyse recognition, and in particular to identify the key residues making the                
most important contributions to recognition. In this context atomistic molecular simulations have            
reached a level of accuracy that allows them to be a powerful tool to complement the available                 
experimental structural information to study in detail the mechanical properties of the interaction             
partners alone [Beveridge 2004, Dixit 2005, Lavery 2010, Pasi 2014, Dans 2014], as well as how                
they are affected by their binding. 

Several other features contribute to the specific binding of proteins to DNA, generating a              
complexity which severely limits our ability to predict TFBSs and ultimately to understand the              
regulatory role of each TF [Slattery 2015]. These include cooperative binding of multiple TFs, and               
the spatiotemporal variations in accessibility of chromatin, nucleosome occupancy, and DNA           
methylation. Integrating all this information is an ambitious goal of the MuG project, and the MuG                
VRE is the perfect environment to establish and exploit these connections. 

In this document a full description is provided of the software tools relevant for the study                
of protein-DNA interactions within MuG (see Figure 1 for a summary). On the basis of the                
guidelines defined in the software architecture specifications (See Deliverable 6.1 [D6.1]), a tool             
within the VRE is defined by four parameters: ​(i) functionality, ​(ii) required input data, ​(iii) resulting                
output data and ​(iv) type of integration within the VRE and execution environment requirements.              
In the following sections, each tool will be defined in these terms, with particular focus to how it                  
interacts with data management (points ​ii and ​iii​ ) and with the computational infrastructure (point              
iv​ ). 
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3 PROTEIN-DNA TOOLS 
3.1 General considerations 

Figure 1 shows the protein-DNA interaction (PDI) information network in MuG, which            
summarises the flow of information related to PDIs within the MuG VRE. In particular, it defines                
the main types of data that are pertinent to studying PDIs, connected through the relevant tools                
available in the VRE: details on these entities are provided in the following sections.  

Connecting heterogeneous data from different sources and bridging the gap between the            
various size and time-scales relevant to the understanding of multiscale genomics is at the heart of                
the ambition of the MuG VRE. In this spirit, the PDI information network connects sequence               
information on proteins and DNA to structural representations of these macromolecules and their             
complexes at the atomistic scale, and then further, through molecular simulations to coarse-grain             
models of chromatin at various scales, and through binding affinity analysis to genome-wide             
protein-DNA binding specificity analysis (ChIP-seq).  

The field of 4D genomics is experiencing a phase of exponential growth, and this results in                
a high rate of appearance of new data and new tools. Given this situation it is likely that a given                    
tool might be supplanted by a newer, more performing tool in the near future. Furthermore,               
during an initial requirement survey carried out within the MuG project [IC6.0], it was pointed out                
by several prospective users that the VRE should include multiple tools to perform the same               
scientific tasks, in order to leave the freedom of choice to the user. For these reasons, tools are                  
grouped in Tool Categories that share a common functionality, and the PDI network is designed to                
define the relationship among these tool categories, to establish a structure that is more              
sustainable and likely to be persistent for longer. Each tool category is therefore characterised by a                
particular functionality and by a specific input and a specific output ​Data Type (see Section 3.2), as                 
outlined in Figure 1 and described in detail in Section 3.3. For each category, one or more specific                  
tools are implemented in the VRE using the most appropriate strategy according to the guidelines               
defined in the software architecture specification [D6.1]: details on the integration of each tool in               
the computational infrastructure of the VRE are given in Section 3.4.  

The choice of tools to integrate in the VRE was made primarily based on their functionality,                
making sure they are the best match for the envisaged use cases within the field of multiscale                 
genomics. Tools that are in active development and that benefit from a large and lively user                
community were preferred. Other choice criteria include the tool’s simplicity of integration within             
the VRE and its ease of licensing for community usage.  

3.2 Data types 
Data will be stored and annotated according to the specifications set in Deliverables 4.1              

(Data types, Processing and Data Model Specification [D4.1]) and 4.2 (Data Management Plan             
[D4.2]). In the following list, the data types mentioned in the protein-DNA interaction (PDI)              
information network (Figure 1) are listed, with references to relevant sections of the Data              
Management Plan (DMP).  

- DNA Sequence, Protein Sequence​: see Section 3.3 of the DMP. 
- DNA Structure, Protein Structure, Protein-DNA Complex, Protein-protein Complex​:        

Three-dimensional (3D) structure of macromolecules or macromolecular complexes, see         
Section 3.5 of the DMP [D4.2]. 

- Sequence Specificity​: information on a DNA-binding protein’s preference to bind to           
specific DNA sequences. The representation may vary according to the model used to             

 
H2020-EINFRA-2015-1- 676556 
Deliverable 6.2: Software Tools for Protein-DNA Interactions 

6/16 



 

calculate the specificity; Position Weight Matrices [Stormo 1982] are commonly used,           
although they have several limitations. 

- ChIP-seq​: Raw sequencing results are stored according to Section 3.3 of the DMP [D4.2]. 
- Binding sites​: see Section 3.3 of the DMP [D4.2]. 

3.3 Tool categories 
Tools within each category share three features (see D6.1): ​(i) their functionality, ​(ii) required input               
data, ​(iii) resulting output. In this section, for each of the tool categories outlined in the PDI                 
information network (Figure 1), these three features are described. The fourth and final feature              
(type of integration within the VRE and execution environment requirements) is instead specific to              
each tool and will be described in the next section.  

3.3.1 Feature prediction 
- DNA Structure modelling 

- Function​ : Derive the atomic-detailed structure of a DNA fragment from its           
sequence 

- Input data​ : DNA sequence 
- Output data​ : DNA structure 

 
- Protein Structure modelling 

- Function​ :  Derive the atomic-detailed structure of a Protein from its sequence 
- Input data​ : Protein sequence 
- Output data​ : Protein structure 

 
- DNA Flexibility prediction 

- Function​ :  Predict the flexibility of DNA from its sequence 
- Input data​ : Protein sequence 
- Output data​ : DNA Flexibility information (see Section 4.3.3 of the DMP [D4.2]) 

3.3.2 Structural analysis 
- DNA Structure analysis 

- Function​ : Analyse the structure of DNA employing a set of relevant internal            
coordinates that provide a meaningful description of DNA conformation by          
simplifying the atomic-detailed information [Lavery 2009].  

- Input data​ : DNA structure 
- Output data​ : plain-text tabular output 

 
- DNA binding site prediction 

- Function​ : Predict putative regions on the surface of a protein that might act as              
interaction interfaces with DNA. 

- Input data​ : Protein structure 
- Output data​ : The output is often output as a likelihood score, encoded as the              

B-factor column of a PDB structure. Additional plain-text output may be required            
to further interpret the results. 

(continues on page 9… ) 
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(...continued from page 7) 

- RNA binding site prediction 
- Function​ : As for DNA binding site prediction, but for interfaces with RNA. 
- Input data​ : Protein structure 
- Output data​ : Protein structure and plain-text (see DNA binding site prediction) 

 
- Molecular Dynamics 

- Function​ : Provide detailed information on the time evolution of the macromolecule           
or macromolecular complex in physiological conditions, exposing the mechanical,         
dynamical and thermodynamic properties of the system. 

- Input data​ : 3D structure of the molecule/complex 
- Output data​ : Molecular dynamics trajectory (see Section 3.5 of the DMP [D4.2]);            

further analyses can be performed on the trajectories using BIGNASim within the            
VRE [Hospital 2014]. 

3.3.3 Docking and Affinity analysis 
- Protein-DNA Docking 

- Function​ : Identify the best conformation (or a set of most likely conformations) for             
the complex between a target protein and a DNA fragment. 

- Input data​ : Protein structure, DNA structure 
- Output data​ : Protein-DNA complex 3D structure (or a set of structures, grouped as             

multiple models in a single file) 
 

- Protein-Protein Docking 
- Function​ : As for protein-DNA docking, but for complexes between proteins. 
- Input data​ : Two protein structures 
- Output data​ : Protein-protein complex 3D structure (or a set of structures, see            

Protein-DNA docking) 
 

- Binding Affinity Analysis (Protein-DNA) 
- Function​ : Analyse one or more 3D structures of the complex to determine the             

binding affinity of the two partners. 
- Input data​ : Protein-DNA complex 3D structure or MD trajectory 
- Output data​ : Various plain-text files. 

 
- Binding Affinity Analysis (Protein-Protein) 

- Function​ : As for Protein-DNA complexes, but for protein-protein complexes. 
- Input data​ : Protein-protein complex 3D structure or MD trajectory 
- Output data​ : Various plain-text files. 

 
- Sequence Specificity Analysis (Protein-DNA) 

- Function​ : Analyse one or more 3D structures of the complex to make predictions             
about the protein’s preferential binding to specific DNA sequences. 

- Input data​ : Protein-DNA complex 3D structure or MD trajectory. 
- Output data​ : Sequence specificity 
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3.3.4 Motif Discovery and Binding Site prediction 
- Motif Discovery 

- Function​ : Analyse ChIP-seq data to determine the binding specificity of the target            
protein-DNA binding protein. 

- Input data​ : ChIP-seq data (in the form of sequencing reads). 
- Output data​ : Sequence specificity. 

 
- Binding site prediction (genome) 

- Function​ : Scan a sequence (e.g. a genome) to identify potential binding sites of a              
DNA-binding protein, given information on its sequence specificity. 

- Input data​ : Sequence specificity, a Sequence. 
- Output data​ : Binding sites. 

 
- Peak calling 

- Function​ : Analyse ChIP-seq data to determine precisely to what sequences the           
target DNA-binding protein was bound. 

- Input data​ : ChIP-seq data (in the form of sequencing reads). 
- Output data​ : Binding sites. 

3.4 Tool selection 
At least one tool will be integrated in the VRE for each of the categories outlined in the                  

previous section. In this section, the protein-DNA interaction tools are listed, together with details              
that are specific to each tool. These include the fourth and final defining feature for tools, namely                 
(iv) type of integration within the VRE and execution environment requirements (see D6.1). Tools              
are categorised according to their ​integration type in the VRE: ​external​ when tools do not run on                 
the computational infrastructure of the VRE, that is when they are used as external services, for                
example through a REST API. Conversely, ​internal ​when tools are run by calling an executable or by                 
using a Python API: these tools require the definition of their interaction with the computational               
infrastructure of the VRE, as they may require to be installed and run in a specific execution                 
environment. The execution environment is defined as the operating system (OS) and the             
minimum and maximum number of cores/processors that can be used; more complex tools may              
also have specific software dependencies. Each ​internal tool will carry enough information for the              
COMPSs runtime to handle this heterogeneity (for more details see Deliverable 6.1 [D6.1]).             
Although an in depth description of each of these tools functionality and method is outside the                
scope of this document, literature and online references are provided for further details. Finally,              
when available, information about the licensing policies of the tools are specified. 

3.4.1 Feature prediction 
- DNA Structure modelling​: ​NAFlex 

- Integration type​ : EXTERNAL; web service (REST API) 
- Execution environment​ : NA 
- Reference​ : ​http://mmb.irbbarcelona.org/NAFlex/​, [Hospital 2013] 
- License​ : Server is accessible free of charge 

 
- Protein Structure modelling​: ​Modeller 

- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
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- #CPUs​ : min 1, max 1 
- Reference​ : ​https://salilab.org/modeller/​, [Webb 2014] 
- License​ : Free for academics, author required authorization 

 
- DNA Flexibility prediction​: ​DNAFlexBrowser (NAFlex) 

- Integration type​ : EXTERNAL; web app 
- Execution environment​ : NA 
- Reference​ : ​http://www.multiscalegenomics.eu/MuGVRE/flexibility-browser/​,  

[Hospital 2013] 
- License​ : Free 

3.4.2 Structural analysis 
- DNA Structure analysis​: ​Curves+ 

- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max 1 

- Reference​ : http://gbio-pbil.ibcp.fr/Curves_plus, [Lavery 2009] 
- License​ : Free 

 
- DNA binding site prediction​: ​DBSI 

- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max 1 
- Dependencies​ : NACCESS, DSSP, PSI-BLAST and SVM-light 

- Reference​ : ​https://mitchell-lab.biochem.wisc.edu/DBSI/​, [Sukumar 2016] 
- License​ : This program and any other programs supplied with it are free to use for               

non-commercial purposes. Those wishing to distribute modified versions of the          
code can request permission to do so from the authors. 
 

- RNA binding site prediction​: ​OPRA 
- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max 1 

- Reference​ : ​https://life.bsc.es/pid/opra​, [Perez-Cano 2010] 
- License​ : see pyDock 

 
- Molecular Dynamics​: ​NAFlex 

- Integration type​ : INTERNAL; various executables 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max NA (application specific) 
- Dependencies​ : Amber/GROMACS 

- Reference​ : ​http://mmb.irbbarcelona.org/NAFlex/​, [Hospital 2013] 
- License​ : Server is accessible free of charge 
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3.4.3 Docking and Affinity analysis 
- Protein-DNA Docking​: ​FTDock 

- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max 128 

- Reference​ : ​http://bioinformatics.oxfordjournals.org/content/29/13/1698.long 
- License​ : GNU GPLv1 

 
- Protein-Protein Docking​: ​pyDock 

- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max NA (1 core per pose) 

- Reference​ : ​https://life.bsc.es/pid/pydock/​, [Cheng 2007] 
- License​ : Free for academics 

 
- Binding Affinity Analysis (Protein-Protein)​: ​CCharPPI 

- Integration type​ : EXTERNAL; webapp 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max NA 

- Reference: ​https://life.bsc.es/pid/ccharppi​, [Moal 2015] 
- License: Server is accessible free of charge for academics 

 
- Binding Affinity Analysis (Protein-DNA)​: ​ROSETTA 

- Integration type: INTERNAL; executable 
- Execution environment: 

- OS: GNU/Linux 
- #CPUS: min 1, max 1 

- Reference: [Morozov 2005] 
- License: Free for academics 

 
- Sequence Specificity Analysis​ : ​DNAPROT 

- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max 1 

- Reference​ : ​http://161.111.227.80/compbio/soft/dnaprot.php​, [Angarica 2008] 
- License​ : Free for academics 

3.4.4 Motif Discovery and Binding Site prediction 
- Motif Discovery​: ​RSAT (peak-motifs) 

- Integration type​ : web service (SOAP API) 
- Execution environment​ : NA 
- Reference​ : ​http://rsat01.biologie.ens.fr/​, [Medina-Rivera 2015] 
- License​ : Free for all 
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- Binding site prediction (genome)​: ​TRAP 
- Integration type​ : INTERNAL; executable 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max 1 

- Reference: ​http://trap.molgen.mpg.de​, [Thomas-Chollier 2011] 
- License: Unspecified 

 
- Peak calling​: ​MACS2 

- Integration type​ : INTERNAL; Python library 
- Execution environment​ :  

- OS​ : GNU/Linux 
- #CPUs​ : min 1, max 1 

- Reference: ​http://liulab.dfci.harvard.edu/MACS/​, [Zhang 2008] 
- License: Free for all 

 

4 CONCLUSION 
Protein-DNA interactions play a fundamental role in shaping the regulatory processes in the cell.              
Although the field is in active development, our understanding of these interactions, and in turn               
our ability to predict them, is still limited. The integrative approach that the MuG VRE aims to                 
implement has the potential of overcoming some of these limitations, ultimately paving the way              
towards understand chromatin structure and gene expression regulation.  

This document outlines the protein-DNA section of the MuG VRE, based on available tools              
that match the currently envisaged use cases within the field of multiscale genomics, establishing              
well-defined connections with the VRE’s data management facilities and computational          
infrastructure. The aim of this document is also to sustainably delineate the structures and policies               
that will characterise the future addition of tools and pipelines related to protein-DNA interactions,              
as more workflows and more complex applications become pertinent further on in the project.  
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