

MuG–H2020-EINFRA-2015-1- 676556
 Milestone MS19 – Programming models release

 1

Project Acronym: MuG

Project title: Multi-Scale Complex Genomics (MuG)

Call: H2020-EINFRA-2015-1

Topic: EINFRA-9-2015

Project Number: 676556

Project Coordinator: Institute for Research in Biomedicine (IRB Barcelona)

Project start date: 1/11/2015

Duration: 36 months

Milestone 19: Programming models release

Lead beneficiary: Barcelona Supercomputing Center (BSC-CNS)

Dissemination level: PUBLIC

Due date: 01/09/2017

Actual submission date: 29/08/2017

Copyright© 2015-2018 The partners of the MuG Consortium

MuG–H2020-EINFRA-2015-1- 676556
 Milestone MS19 – Programming models release

 2

Document history

Version Contributor(s) Partner Date Comments

0.1
Javier

Conejero
BSC 18/07/2017 First draft

0.2
Javier

Conejero
BSC 27/07/2017 Added improvements descriptions

0.3
Javier

Conejero
BSC 17/08/2017

Extended and added improvement
descriptions

0.4 Rosa M Badia BSC 24/08/2017 Internal review

 29/08/2017 Final version

MuG–H2020-EINFRA-2015-1- 676556
 Milestone MS19 – Programming models release

 3

Table of contents

1 INTRODUCTION ... 4

2 PROGRAMMING MODELS RELEASE .. 4

3 REFERENCES ... 6

MuG–H2020-EINFRA-2015-1- 676556
 Milestone MS19 – Programming models release

 4

1 INTRODUCTION

COMPSs [1, 2] is the programming model provided by the Virtual Research Environment (VRE) [3]

within the MuG project [4]. It is known for notably improving the performance of large scale

applications (written in Java, C and Python) by automatically parallelizing their execution. COMPSs is

developed by the Workflows and Distributed Computing team at the Barcelona Supercomputing

Center (BSC) [5], and the latest release includes useful and interesting features for the MuG

applications.

The main challenge for the programming model within the MuG project has been to identify the main

requirements of the project applications that were not supported by PyCOMPSs (COMPSs binding for

Python applications), and extend PyCOMPSs in order to enable MuG application developers to

parallelize their existing Python applications and to implement new applications exploiting the new

features. The latest outcome of this work has been the recent PyCOMPSs/COMPSs 2.1 release,

published in June 2017.

This document presents the programming model release for the VRE computational infrastructure,

focusing on the main features that have been implemented with regard to the MuG applications

requirements.

2 PROGRAMMING MODELS RELEASE

The Workflows and Distributed Computing team at BSC announced the new PyCOMPSs/COMPSs

programming model release, version 2.1 (codename Bougainvillea), in June 2017.

This version of PyCOMPSs/COMPSs updates the result of the team’s work in the last years on the

provision of a set of tools that helps developers to program and execute their applications efficiently

on distributed computational infrastructures, such as: Clusters, Grids and Clouds.

The new release comes with a wide variety of new features, from which some of them have been

implemented focused on the MuG applications requirements and future potential improvements. In

particular, this release updates PyCOMPSs/COMPSs with the following main features (emphasizing in

bold the ones that benefit the MuG project):

 Runtime:

o New annotations to simplify tasks that call external binaries.

o Integration with other programming models (MPI, OmpSs, etc.).

o Support for Singularity containers in Clusters.

o Extension of the scheduling to support multi-node tasks (MPI apps as tasks).

o Support for Grid Engine job scheduler in clusters.

o Language flag automatically inferred in runcompss script.

o New schedulers based on tasks’ generation order.

o Core affinity and over-subscribing thread management in multi-core cluster queue

scripts (used with MKL libraries, for example).

 Python:

https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing

MuG–H2020-EINFRA-2015-1- 676556
 Milestone MS19 – Programming models release

 5

o @local annotation to support simpler data synchronizations in master.

o Support for args and kwargs parameters as task dependencies.

o Task versioning support in Python (multiple behaviours of the same task).

o New Python persistent workers that reduce overhead of Python tasks.

o Support for task-thread affinity.

o Tracing extended to support for Python user events and HW counters (with known

issues).

 Tools:

o Visualization of not-running tasks in current graph of the COMPSs Monitor

Focusing on the MuG related features, the new release provides a new mechanism for the tasks which

invoke binaries. To this end, three new decorators (@binary, @mpi and @ompss) have been created

and can be used over the @task decorator. These new decorators enable a better integration with

programming models such as MPI or OmpSs. Consequently, a PyCOMPSs workflow can be composed

of sequential tasks, multi-threaded tasks (with OmpSs) and multi-node tasks (with MPI). The COMPSs

schedulers have been extended accordingly to support these new tasks’ types.

Also, PyCOMPSs has been improved to support args and kwargs parameters as task dependencies (this

feature enables to call tasks with variable number of parameters as can be done in pure Python code).

Two decorators have been provided: for synchronization (@local) and for task versioning

(@implements). The @local decorator is intended to provide simpler data synchronization in the code

run by the main process when invoking both tasks and non-task functions. This decorator can be used

to annotate non-task functions and this indicates to PyCOMPSs that it should perform the necessary

data synchronizations over the parameters used by previously invoked tasks (i.e., transferring results

of tasks generated in remote nodes to the computing node where the @local task is executed).

Additionally, the @implements decorator enables developers to define multiple implementations of

the same task (which can be annotated with the @constraint annotation). The runtime selects the

version that is more appropriate given the available resources.

With regard to PyCOMPSs internals, it has been improved by adding persistent workers. Consequently,

the worker overhead is reduced since it is not necessary to start a new Python interpreter for each

task, enabling to get better performance with fine grain tasks.

COMPSs has also been extended with a better support for Intel MKL based libraries, considering two-

levels of parallelism that can be combined: task-level and thread level.

In addition to all these new features, PyCOMPSs has also been integrated with Jupyter notebook. This

integration is intended to enable users to develop and test PyCOMPSs applications from Jupyter

notebook. And with regard to containers interoperability, this new release is able to deal with

Singularity.

PyCOMPSs previous version 2.0 (codename Amapola), released in November 2016, also included some

interesting features that MuG developers can benefit from, such as: an explicit barrier (synchronization

API call without data synchronization), performance improvement due to the upgrade to Java 8, and

scheduling improvements.

Moreover, some improvements have also been performed, such as: Improved PyCOMPSs serialization

and several bug fixes. The serialization improvement has a direct impact on the performance (since

the serialization requires to transform the objects to be used among tasks into a byte writable format),

MuG–H2020-EINFRA-2015-1- 676556
 Milestone MS19 – Programming models release

 6

and may become important within the MuG applications since the objects used among tasks may have

an important size. Moreover, several bug fixes have been applied, improving the stability during the

execution.

This COMPSs release has also been updated within the existing tutorial VM, which enables the MuG

application developers to understand and play with the programming model in a ready and controlled

environment (using an IDE or Jupyter notebook). Moreover, it allows debugging the applications with

tests and/or small datasets.

The COMPSs programming model has been successfully deployed within the MuG Cloud

infrastructures: BSC and EBI. Applications developed with the current release can be deployed within

the infrastructure in order to launch them from the VRE and benefit from the new improvements.

The COMPSs 2.1 packages, as well as the updated manuals and tutorial VM can be downloaded from

the COMPSs webpage (6).

3 REFERENCES

(1) ServiceSs: an interoperable programming framework for the Cloud, Journal of Grid Computing,

March 2014, Volume 12, Issue 1, pp 67–91, Lordan, F., E. Tejedor, J. Ejarque, R. Rafanell, J.

Álvarez, F. Marozzo, D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia, DOI: 10.1007/s10723-013-

9272-5

(2) PyCOMPSs: Parallel computational workflows in Python, Enric Tejedor, Yolanda Becerra,

Guillem Alomar, Anna Queralt, Rosa M. Badia, Jordi Torres, Toni Cortes, Jesús Labarta, IJHPCA

31(1): 66-82 (2017), DOI: 10.1177/1094342015594678

(3) VRE (beta) – http://multiscalegenomics.bsc.es

(4) MuG project – http://multiscalegenomics.eu

(5) Barcelona Supercomputing Center (BSC) – http://www.bsc.es

(6) COMPSs project – http://www.bsc.es/compss

http://multiscalegenomics.bsc.es/
http://multiscalegenomics.eu/
http://www.bsc.es/
http://www.bsc.es/compss

