

Project​ ​Acronym:​ ​​MuG

Project​ ​title:​​ ​Multi-Scale​ ​Complex​ ​Genomics​ ​(MuG)

Call​:​ ​H2020-EINFRA-2015-1

Topic​:​ ​EINFRA-9-2015

Project​ ​Number​:​ ​676556

Project​ ​Coordinator​:​ ​Institute​ ​for​ ​Research​ ​in​ ​Biomedicine​ ​(IRB​ ​Barcelona)

Project​ ​start​ ​date​:​ ​1/11/2015

Duration​:​ ​36​ ​months

Deliverable​ ​4.5:​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

Lead​ ​beneficiary​:​ ​The​ ​European​ ​Bioinformatics​ ​Institute​ ​(EMBL-EBI)

Dissemination​ ​level​:​ ​PUBLIC

Due​ ​date:​ ​31/10/2017

Actual​ ​submission​ ​date:​ ​31/10/2017

Copyright​©​ ​ ​2015-2018​ ​The​ ​partners​ ​of​ ​the​ ​MuG​ ​Consortium

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme​ ​under​ ​grant​ ​agreement​ ​No​ ​676556.

Document​ ​History

Version Contributor(s) Partner Date Comments

0.1 Mark​ ​McDowall EMBL-EBI 29/09/2017 First​ ​draft

0.2 Andy​ ​Yates EMBL-EBI 04/10/2017 Second​ ​Draft

0.3 Laia​ ​Codo BSC 27/10/2017 Added​ ​Service​ ​Deployment

1.0 Mark​ ​McDowall EMBL-EBI 30/10/2017 Final​ ​report

 31/10/2017 Approved​ ​by​ ​Supervisory
Board

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

2/18

Table​ ​of​ ​Contents

1​ ​EXECUTIVE​ ​SUMMARY

2​ ​INTRODUCTION

3​ ​DATA​ ​ACCESS​ ​API

3.1​ ​Data​ ​Structure​ ​Updates

3.2​ ​DM​ ​API​ ​Functions

3.3​ ​Testing,​ ​Code​ ​Quality​ ​and​ ​Documentation

4​ ​RESTful​ ​ARCHITECTURE

4.1​ ​Structure

4.2​ ​Authentication

4.3​ ​RESTful​ ​Interaction​ ​With​ ​The​ ​DM​ ​API

4.4​ ​Data​ ​Retrieval

4.4.1​ ​mg-rest-file

4.4.2​ ​mg-rest-adjacency

4.4.3​ ​mg-rest-3d

4.5​ ​Testing,​ ​Code​ ​Quality​ ​and​ ​Documentation

5​ ​SERVICE​ ​DEPLOYMENT

6​ ​CONCLUSIONS

7​ ​ANNEXES

7.1​ ​Abbreviations

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

3/18

1​ ​EXECUTIVE​ ​SUMMARY
The following document describes the Data Management (DM) Application Programming Interface
(API) and the changes that have been introduced since the reporting of D4.4. The DM API has been
integrated into a RESTful API allowing physically separated clusters to be able to efficiently interact
with our DM service. This has required work to develop an AAI layer that is able to quickly identify a
user, authenticate them and provide them access to only files they have authorisation to see. Further
extensions have been added to the RESTful DM layer, developed around the concept of
microservices. These provide access, either selectively or completely, to the files that are stored
within the DM layer. This access allows the VRE and COMPSs to make the right files available to
pipelines and tools, but also to visualisers integrating the multitude of data types involved in
understanding​ ​the​ ​folding​ ​of​ ​chromosomes.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

4/18

2​ ​INTRODUCTION
Resolving the architecture of chromosomes within the nucleus requires a large array of experimental
methods, the result of which is a large number of files that need to be tracked and monitored.
Keeping records about how files were generated, where they came from and what tools were run are
important in tracking the provenance of a piece of knowledge. Knowing how the information was
generated is crucial not only for accurate reporting of the work but also in knowing how to interpret
the​ ​results.​ ​These​ ​form​ ​the​ ​principles​ ​of​ ​FAIR​ ​(findable,​ ​accessible,​ ​identifiable,​ ​reusable)​ ​data​ ​access.

On top of experimental data and metadata storage described in Deliverable 4.4 (D4.4) an Application
Programming Interface (API) has been developed to allow the Virtual Research Environment (VRE) to
communicate with a Data Management (DM) layer; a software package responsible for noting the
physical location of data and associated metadata. MuG’s adopted computation infrastructure means
our VRE has the capability of being deployed across multiple cloud environments requiring the
tracking of files across multiple disparate locations. We have developed a RESTful interface to
provide a seamless layer for interaction with the DM API. With the introduction of a RESTful interface
there is also the need for an authentication layer to ensure that users can only have access to files
that​ ​they​ ​are​ ​entitled​ ​to​ ​view.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

5/18

3​ ​DATA​ ​ACCESS​ ​API
The DM API is based around interacting with the MongoDB data structure that was described in D4.4
section 4.1. The code is implemented in Python 2.7.10+, but is also compatible with Python 3.5. The
API plays a dual role, firstly as a simple way for services to interact with the data, the second is to
enforce the way in which the data can queried. The first part removes the complexities of needing to
implement custom interactions with the MongoDB for every service that want to get information
from the database. The second enforces that service that wish to interact with the database have a
matching user_id to retrieve and store data removing the risk of exposing inappropriate files to
another​ ​user.

3.1​ ​Data​ ​Structure​ ​Updates
Since D4.4 there have been modifications made to the data structure to incorporate more
information and ease the integration of the DM API within the existing VRE. Table 3.1.1 describes all
of the primary parameters that are stored within the DM, the newly introduced parameters include
path_type, parent_dir and size and are highlighted in blue. The path_type can be one of file, dir
(directory) or Universal Resource Locator (URL). Using URLs means files that are not located on
servers can be flagged as a file within the remit of the MuG consortium/VRE. This can include links to
repositories or servers outside of the project that are hosting data of interest to analysis methods
within​ ​the​ ​VRE.

One of the new requirements is for the ability for a VRE user to organise their files into a directory
like structure independently from how they are organised on the host server. Directory structures
are a well known and used paradigm for organising complex datasets in cloud environments e.g.
Dropbox, Google Drive, ownCloud. The introduction of parent_id allows for the existence of a
directory structure in combination with the path_type being set to ‘dir’. To help the VRE best decide
where to run a given pipeline a file size (bytes) parameter has also been included. This will help as it
will allow the VRE to balance between running the pipeline local to the data and incurring the cost of
moving​ ​data​ ​versus​ ​waiting​ ​for​ ​other​ ​processes​ ​to​ ​finish.

Along with each file getting a timestamp for the creation of an entry, within the metadata there is
also an expiration_date. This is so it is possible to automatically remove old metadata files after a
defined period of time to reduce old files getting left on the system. Currently the expiration time is
not​ ​being​ ​enforced​ ​while​ ​still​ ​in​ ​the​ ​early​ ​stages​ ​of​ ​the​ ​project.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

6/18

Parameter Required Description

user_id YES The​ ​unique​ ​user​ ​ID​ ​for​ ​whom​ ​the​ ​file​ ​is​ ​associated​ ​with

file_id This​ ​is​ ​an​ ​auto-generated​ ​ID​ ​that​ ​is​ ​created​ ​when​ ​the​ ​data​ ​is​ ​entered.
The​ ​ID​ ​is​ ​unique​ ​to​ ​the​ ​file​ ​and​ ​the​ ​user.

file_path YES Location​ ​of​ ​the​ ​file​ ​either​ ​within​ ​the​ ​file​ ​system​ ​or​ ​a​ ​URL​ ​to​ ​an​ ​archive
or​ ​repository.

path_type Defines​ ​if​ ​the​ ​file_path​ ​is​ ​a​ ​file​ ​or​ ​directory

parent_dir DEPENDENT If​ ​the​ ​path_type​ ​is​ ​a​ ​directory​ ​then​ ​this​ ​parameter​ ​defines​ ​the​ ​_id​ ​of
the​ ​parent​ ​directory.

file_type YES File​ ​format.​ ​The​ ​current​ ​accepted​ ​file​ ​types​ ​are​ ​described​ ​in​ ​section​ ​5.

size Size​ ​of​ ​the​ ​file​ ​(bytes)

data_type This​ ​describes​ ​the​ ​type​ ​of​ ​data​ ​that​ ​is​ ​in​ ​the​ ​file.​ ​This​ ​is​ ​helpful​ ​as​ ​there
are​ ​several​ ​formats​ ​that​ ​can​ ​have​ ​different​ ​data.​ ​For​ ​example​ ​FASTQ
data​ ​can​ ​be​ ​related​ ​to​ ​RNA-seq,​ ​MNase-Seq,​ ​ChIP-seq,​ ​WGBS,​ ​etc.

taxon_id YES The​ ​taxonomic​ ​ID​ ​of​ ​the​ ​species​ ​from​ ​which​ ​the​ ​sample​ ​data​ ​was
taken.

compressed Whether​ ​the​ ​file​ ​has​ ​been​ ​compressed.​ ​Type​ ​of​ ​compression​ ​used
depends​ ​on​ ​the​ ​format​ ​in​ ​question.

source_id List​ ​of​ ​the​ ​file​ ​IDs​ ​that​ ​were​ ​used​ ​during​ ​the​ ​creation​ ​of​ ​this​ ​file.

meta_data DEPENDENT There​ ​are​ ​cases​ ​where​ ​additional​ ​data​ ​is​ ​required​ ​for​ ​some​ ​files​ ​that​ ​is
not​ ​relevant​ ​to​ ​other​ ​file​ ​types.​ ​Files​ ​that​ ​have​ ​been​ ​generated​ ​and​ ​are
dependent​ ​on​ ​alignments​ ​require​ ​that​ ​the​ ​meta_data​ ​has​ ​an
‘assembly’​ ​key​ ​with​ ​the​ ​assembly​ ​for​ ​which​ ​the​ ​alignment​ ​was​ ​made
against

creation_time This​ ​is​ ​the​ ​time​ ​inserted​ ​by​ ​the​ ​API​ ​and​ ​is​ ​not​ ​required​ ​from​ ​the​ ​user.

Table​ ​3.1.1:​​ ​List​ ​of​ ​parameters​ ​stored​ ​by​ ​the​ ​data​ ​management​ ​API​ ​and​ ​whether​ ​these​ ​parameters​ ​are​ ​required.​ ​Those
highlighted​ ​in​ ​blue​ ​are​ ​new​ ​since​ ​D4.4

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

7/18

3.2​ ​DM​ ​API​ ​Functions
The DM API covers all from from loading filtering and modifying and deleting.The code in block 3.2.1
highlights​ ​opening​ ​a​ ​DM​ ​API​ ​handle​ ​and​ ​inserting​ ​an​ ​entry​ ​into​ ​the​ ​DM​ ​using​ ​the​ ​API.

from​​ ​dmp​ ​​import​​ ​dmp
dm_handle​ ​=​ ​dmp(test=​True​)
file_id​ ​=​ ​dm_handle.set_file(
​ ​​ ​​ ​​ ​user_id=​'test'​,
​ ​​ ​​ ​​ ​file_path=​'/tmp/test.fastq'​,
​ ​​ ​​ ​​ ​path_type=​'file'​,

​ ​​ ​​ ​​ ​parent_dir=​''​,
​ ​​ ​​ ​​ ​file_type=​'FASTQ'
​ ​​ ​​ ​​ ​size=​1234567890​,
​ ​​ ​​ ​​ ​data_type=​'hic'​,
​ ​​ ​​ ​​ ​taxon_id=​9606​,
​ ​​ ​​ ​​ ​compressed=​False​,
​ ​​ ​​ ​​ ​source_id=[],
​ ​​ ​​ ​​ ​meta_data={​'assembly'​:​ ​​'GRCh38'​}
)

Code​ ​Block​ ​3.2.1​:​ ​Example​ ​code​ ​showing​ ​how​ ​to​ ​load​ ​a​ ​file​ ​record​ ​into​ ​the​ ​DM​ ​using​ ​the​ ​API

Once a file has been logged within the DM it is possible to search for relevant files. All queries require
the user_id as a minimum piece of information. All of the functions to filter the available files return
a list of python dictionary objects detailing the metadata associated with a given file. The only
exception to this is the get_files_by_id which returns only the dictionary object containing the
metadata.​ ​The​ ​set​ ​of​ ​filter​ ​functions​ ​that​ ​are​ ​available​ ​are​ ​listed​ ​in​ ​table​ ​3.2.1.

It is also important for the user to be able to update the information within the DM to either add
additional information that was not available at the time of submission, correct already stored
information or to remove files from the system. To allow for this there are the functions that are
listed​ ​in​ ​table​ ​3.2.2​ ​to​ ​provide​ ​a​ ​level​ ​of​ ​data​ ​management.

Whenever there is a change to the data within the DM for a given file the entry is checked to ensure
that all the required data is still defined. If a piece of information fails the validation check this raises
an​ ​error​ ​and​ ​wont​ ​update​ ​the​ ​record​ ​unless​ ​a​ ​valid​ ​entry​ ​is​ ​submitted.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

8/18

Function Parameters Description

get_files_by_id user_id,​ ​file_id Return​ ​the​ ​metadata​ ​about​ ​a​ ​single​ ​specific​ ​file

get_files_by_user user_id List​ ​all​ ​files​ ​associated​ ​with​ ​a​ ​given​ ​user

get_files_by_path user_id,​ ​file_path Return​ ​the​ ​files​ ​that​ ​have​ ​a​ ​specific​ ​file_path

get_files_by_file_type user_id,​ ​file_type List​ ​all​ ​files​ ​based​ ​on​ ​the​ ​file​ ​type​ ​(fasta,​ ​fastq,
bam,​ ​pdf,​ ​lif,​ ​etc)

get_files_by_data_type user_id,​ ​data_type List​ ​all​ ​files​ ​that​ ​relate​ ​to​ ​a​ ​specific​ ​data​ ​type
(chip-seq,​ ​rna-seq,​ ​etc)

get_files_by_assembly user_id,​ ​assembly List​ ​all​ ​files​ ​that​ ​have​ ​been​ ​aligned​ ​with​ ​a​ ​specific
assembly

get_files_by_taxon_id user_id,​ ​taxon_id List​ ​all​ ​file​ ​that​ ​are​ ​related​ ​to​ ​a​ ​specific​ ​species
irrespective​ ​of​ ​the​ ​assembly​ ​that​ ​they​ ​have​ ​been
aligned​ ​with

get_file_history user_id,​ ​file_id List​ ​of​ ​all​ ​files​ ​that​ ​have​ ​been​ ​used​ ​to​ ​generate​ ​a
given​ ​results​ ​file

Table​ ​3.2.1:​​ ​List​ ​of​ ​functions​ ​available​ ​for​ ​filtering​ ​a​ ​user's​ ​files.

Function Parameters Description

remove_file user_id,​ ​file_id Removing​ ​a​ ​file​ ​from​ ​the​ ​DM​ ​records.

add_file_metadata user_id,​ ​file_id,
key,​ ​value

Add​ ​additional​ ​metadata​ ​to​ ​an​ ​already​ ​existing​ ​record
within​ ​the​ ​metadata.​ ​This​ ​allows​ ​a​ ​user​ ​to​ ​add​ ​extra
information​ ​including​ ​if​ ​it​ ​has​ ​come​ ​from,​ ​or​ ​been
included​ ​in​ ​a​ ​publication.

remove_file_metadata user_id,​ ​file_id,
key

If​ ​metadata​ ​has​ ​been​ ​erroneously​ ​added​ ​then​ ​it​ ​can
be​ ​removed

modify_column user_id,​ ​file_id,
key_value

Allows​ ​for​ ​the​ ​subsequent​ ​modification​ ​of​ ​the​ ​main
data​ ​columns​ ​listed​ ​in​ ​table​ ​3.1.1.

Table​ ​3.2.2:​​ ​List​ ​of​ ​functions​ ​for​ ​editing​ ​entries​ ​within​ ​the​ ​DM.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

9/18

3.3​ ​Testing,​ ​Code​ ​Quality​ ​and​ ​Documentation
As the code base grows and the number of developers increases it is important to maintain high
standards when it comes to the quality of the code, documentation and ensuring that the functions
that have been written work as expected. This is vital when it comes to introducing changes to the
code base and having confidence that this will not break other functions already in the API. To help
with this there has been the adoption of of documentation standards defined as part of MS14, but
these have also been expanded on and detailed within ReadTheDocs to define how code within the
project​ ​should​ ​be​ ​written:

● http://multiscale-genomics.readthedocs.io/en/latest/coding_standards.html

To make sure that the functions in the API return valid results we have implemented pytest and
written tests for each of the functions to ensure that they return valid results. To do this it uses the
mongomock python module to simulate a MongoDB, which is then populated with mock entries and
queries are made against this dataset. There are also example files kept with the Git repository and
where the sample files would be too large there are generators that are able to create an example
file of the matching file type. This testing has been automated using TravisCI. Everytime there is a
push to the GitHub repository the full suit of tests are run by TravisCI to ensure that there are no
failures.

The final approach to creating a clean and simple API has been the introduction of linting of the code.
This is a process to check that the code that has been written conforms to standard, in the case of
python this is PEP8 (​https://www.python.org/dev/peps/pep-0008/​). For the API we use pylint to
check that the code matches the PEP8 standard. This can be done locally before committing, but is
also run automatically by Landscape.io, which tracks if there has been a change in quality between
one​ ​commit​ ​and​ ​the​ ​next​ ​when​ ​there​ ​has​ ​been​ ​a​ ​push​ ​to​ ​the​ ​GitHub​ ​repository.

One part of the PEP8 standard it to make sure that there is documentation for all publically available
functions. This means that at minimum there needs to be a short description of the function so that it
can display within the matching ReadTheDocs portal. Defined in the coding standards documentation
there are examples about how to set out the documentation. There are also notes about how to
apply​ ​the​ ​Apache​ ​2.0​ ​License​ ​to​ ​a​ ​new​ ​file​ ​or​ ​repository.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

10/18

http://multiscale-genomics.readthedocs.io/en/latest/coding_standards.html
https://www.python.org/dev/peps/pep-0008/

4​ ​RESTful​ ​ARCHITECTURE
Having the VRE and compute as a centrally managed infrastructure means that it is possible to keep a
tight control over the tracking of files. As the infrastructure grows, and compute and storage
resources are introduced that are not local to the VRE it is important to be able to provide a
mechanism to be able to update the DM records from physically separated machines. It is also a
requirement that visualisers are able to access the results files that have been generated so that
information can be integrated in an accessible manner for the user. The development of RESTful
servers also removes the dependence of downstream services needing to be written in Python. This
allows​ ​visualisation​ ​tools​ ​access​ ​to​ ​the​ ​data​ ​while​ ​using​ ​the​ ​most​ ​appropriate​ ​language​ ​for​ ​the​ ​task.

To facilitate this a RESTful approach has been taken to allow access to the DM and the files that are
being tracked. The section describes the approach taken for developing a RESTful API, authentication
of​ ​the​ ​users​ ​and​ ​what​ ​endpoints​ ​are​ ​available.

Development of each server is based on the HATEOAS (Hypermedia as the Engine of Application
State) paradigm. Responses from the servers are self describing and links are provided to related
endpoints.​ ​When​ ​no​ ​parameters​ ​are​ ​provided​ ​then​ ​a​ ​list​ ​of​ ​the​ ​required​ ​parameters​ ​are​ ​given.

4.1​ ​Structure
The RESTful service has been designed around the concept of micro services. This relies on multiple,
small, dedicated services that focus on serving a specific function. If a new function is required then a
new service and matching endpoints are developed. Each service acts as its own independent server,
if there are dependencies on another service then this is via RESTful calls to that service. This
function is provided by the mg-rest-service server. It acts as a head server that has a list of the
available services that it can ping to ensure that they are functioning, but also provide an up to date
list​ ​of​ ​next​ ​level​ ​down​ ​endpoints.

Microservices allow our developers to choose the most appropriate language for a given service.
However, given that the majority of experience is within Python this has been the default language as
it allows easy integration with the DM API. We have chosen Flask as our default framework for
developing​ ​microservices.

4.2​ ​Authentication
As anyone can query a URL it is important to be able to authenticate a user is who they say they are
to prevent one user see another user’s files without permission. An OAuth server has been set up
that can use either LDAP, Google IDs or LinkedIn. In the future we intend to allow access via a user’s
ELIXIR to identify. The authentication server issues tokens to the user, these are submitted in the
header of a request to the RESTful server. The server then checks the token with the authentication
server. If it is a valid token then the authentication server returns the ID of the user which can then
be used to query the DM to retrieve the relevant information. If the token is invalid or not supplied
then​ ​the​ ​request​ ​fails​ ​and​ ​raises​ ​the​ ​relevant​ ​HTTP​ ​error​ ​response​ ​code.

This means that the user_id is never used in the URL, users always have to provide a valid token on
all requests where they are retrieving data and if a user_id is known it won’t be used to access data
as all requests are passed to the authentication server first. The tokens are also time limited to
ensure that if there is a leaked token then this is only valid for a limited time period. Likewise a user is
also​ ​able​ ​to​ ​manually​ ​regenerate​ ​a​ ​token​ ​if​ ​a​ ​previous​ ​token​ ​has​ ​been​ ​exposed.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

11/18

The authentication of tokens with the authentication server is performed using Python decorators
around the respective GET, PUSH, DELETE and PUT functions (see Code Block 4.2.1), in the case of the
MuG RESTful services it is called “@authorized”. To access the @authorized decorator for validating
tokens and returning the user_id each RESTful API needs to import the wrapper from the mg-rest-util
repository.

from​​ ​flask_restful​ ​​import​​ ​Resource
from​​ ​rest.mg_auth​ ​​import​​ ​authorized
class​​ ​​example_endpoint​(Resource):

​ ​​ ​​ ​​ ​@authorized
​ ​​ ​​ ​​ ​​def​​ ​​get​(self,​ ​user_id):
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​return​​ ​​True

Code​ ​Block​ ​4.2.1:​​ ​Example​ ​use​ ​of​ ​the​ ​@authorized​ ​decorator

Decorators work by performing a function before the decorated function subsequently passing the
values that they acquire, in the case of code block 4.2.1 this is the user_id. The passing of an
authentication token needs to be done in the header of an HTTP request, an example if this is shown
in​ ​code​ ​block​ ​4.2.2​ ​using​ ​an​ ​example​ ​endpoint​ ​from​ ​table​ ​4.3.1.

curl​ ​-H​ ​​"Authorization:​ ​Bearer​ ​<token_string>"​​ ​--url
"<url_root>/mug/api/dmp/files?assembly=GRCh38"

Code​ ​Block​ ​4.2.2:​​ ​Example​ ​use​ ​of​ ​including​ ​a​ ​validation​ ​token​ ​in​ ​the​ ​header​ ​of​ ​an​ ​HTTP​ ​request.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

12/18

4.3​ ​RESTful​ ​Interaction​ ​With​ ​The​ ​DM​ ​API
The main RESTful server for interacting with the DM API is the mg-rest-dm server. This maps all of the
filtering, submission, modification and deletion functions to the respective endpoints while relaying
the standard outputs of the DM API to the user. As described in section 4.2.1 it relies on a valid token
to be passed with each request to authenticate the user as well as knowing who the file should
belong​ ​to​ ​when​ ​querying​ ​the​ ​DM​ ​API.​ ​The​ ​main​ ​endpoints​ ​within​ ​this​ ​service​ ​are​ ​listed​ ​in​ ​table​ ​4.3.1.

Endpoint Parameters Description

/mug/api/dmp Lists​ ​the​ ​available​ ​endpoints​ ​that​ ​can​ ​be
requested.

/mug/api/dmp/ping Returns​ ​the​ ​name​ ​of​ ​the​ ​service,​ ​version,
author,​ ​license,​ ​description,​ ​link​ ​to​ ​the​ ​root​ ​for
the​ ​service​ ​and​ ​the​ ​status.

/mug/api/dmp/files region,
assembly,
file_type,
data_type,
by_user

There​ ​are​ ​5​ ​filter​ ​types​ ​to​ ​retrieve​ ​files​ ​for​ ​a
given​ ​user.​ ​Region​ ​uses​ ​the​ ​positional​ ​HDF5
meta​ ​index​ ​described​ ​in​ ​D4.4​ ​section​ ​5.1.1​ ​and
requires​ ​the​ ​assembly​ ​parameter​ ​as​ ​well.
Querying​ ​can​ ​be​ ​done​ ​by​ ​assembly​ ​,​ ​file_type​ ​or
data_type.​ ​by_user​ ​returns​ ​all​ ​files​ ​for​ ​the
current​ ​user.

/mug/api/dmp/file_meta file_id Returns​ ​a​ ​python​ ​dictionary​ ​of​ ​the​ ​selected​ ​file

/mug/api/dmp/file_history file_id Returns​ ​a​ ​list​ ​of​ ​the​ ​files​ ​required​ ​to​ ​generate
the​ ​specified​ ​file_id.

Table​ ​4.3.1:​​ ​List​ ​of​ ​the​ ​endpoints​ ​available​ ​within​ ​the​ ​mg-rest-dm​ ​server.​ ​With​ ​the​ ​exception​ ​of​ ​the​ ​root​ ​URL​ ​and​ ​the​ ​ping
endpoint​ ​all​ ​require​ ​a​ ​valid​ ​authentication​ ​token​ ​in​ ​the​ ​header​ ​to​ ​identify​ ​the​ ​user_id.

4.4​ ​Data​ ​Retrieval
There are 3 services so far that have been developed to handle the exchanges of data between the
DM​ ​and​ ​the​ ​user.​ ​Below​ ​we​ ​further​ ​describe​ ​the​ ​services​ ​that​ ​have​ ​been​ ​generated​ ​so​ ​far.

4.4.1​ ​mg-rest-file
This is the main service for streaming files to the user, the endpoints have been listed in table 4.4.1.1.
Once the user has identified the files that they wish to acquire, whether this is to download, visualise
or use as part of a pipeline, this service acts to handle the passing of that data from where it is
located to the user. The reason for having this interface for the RESTful service is to provide a single
gateway​ ​access​ ​to​ ​files​ ​that​ ​may​ ​be​ ​located​ ​on​ ​multiple​ ​servers.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

13/18

Endpoint Parameters Description

/mug/api/dmp/file Lists​ ​the​ ​available​ ​endpoints​ ​that​ ​can​ ​be
requested.

/mug/api/dmp/file/ping Returns​ ​the​ ​name​ ​of​ ​the​ ​service,​ ​version,​ ​author,
license,​ ​description,​ ​link​ ​to​ ​the​ ​root​ ​for​ ​the​ ​service
and​ ​the​ ​status.

/mug/api/dmp/file/whole file_id Streams​ ​the​ ​whole​ ​file​ ​to​ ​the​ ​user

/mug/api/dmp/file/region file_id,
chrom,
start,​ ​end

For​ ​genomic​ ​position​ ​file​ ​types​ ​(bed/bigBed,
wig/bigWig​ ​and​ ​GFF3/Tabix)​ ​it​ ​is​ ​possible​ ​to​ ​return
only​ ​the​ ​features​ ​in​ ​a​ ​given​ ​region.

Table​ ​4.4.1.1:​​ ​List​ ​of​ ​the​ ​endpoints​ ​available​ ​within​ ​the​ ​mg-rest-file​ ​server.​ ​With​ ​the​ ​exception​ ​of​ ​the​ ​root​ ​URL​ ​and​ ​the
ping​ ​endpoint​ ​all​ ​require​ ​a​ ​valid​ ​authentication​ ​token​ ​in​ ​the​ ​header​ ​to​ ​identify​ ​the​ ​user_id.

4.4.2​ ​mg-rest-adjacency
This is a specific service for serving adjacency matrix data that has been generated by TADbit and
saved in the HDF5 file format described in D4.4 section 5.1.2. The available endpoints are listed in
table​ ​4.4.2.1.

Endpoint Parameters Description

/mug/api/adjacency Lists​ ​the​ ​available​ ​endpoints​ ​that​ ​can
be​ ​requested.

/mug/api/adjacency/ping Returns​ ​the​ ​name​ ​of​ ​the​ ​service,
version,​ ​author,​ ​license,​ ​description,
link​ ​to​ ​the​ ​root​ ​for​ ​the​ ​service​ ​and​ ​the
status.

/mug/api/adjacency/GetDetails file_id Lists​ ​the​ ​chromosomes​ ​and
resolutions​ ​in​ ​the​ ​dataset

/mug/api/adjacency/GetInteractions file_id,​ ​chrom,
start,​ ​end,​ ​res,
limit_chr,
limit_start,
limit_end

Lists​ ​all​ ​of​ ​the​ ​interactions​ ​for​ ​a​ ​given
region.​ ​This​ ​can​ ​be​ ​limited​ ​to​ ​a​ ​given
subset​ ​on​ ​another​ ​chromosome​ ​or​ ​the
same​ ​chromosome.

/mug/api/adjacency/GetValue file_id,​ ​res,
pox_x,​ ​pos_y

Lists​ ​the​ ​peak​ ​count​ ​for​ ​a​ ​given
resolution​ ​for​ ​a​ ​given​ ​x​ ​and​ ​y​ ​position
listed​ ​in​ ​the​ ​output​ ​from​ ​the
GetInteractions​ ​endpoint.

Table​ ​4.4.2.1:​​ ​List​ ​of​ ​the​ ​endpoints​ ​available​ ​within​ ​the​ ​mg-rest-file​ ​server.​ ​With​ ​the​ ​exception​ ​of​ ​the​ ​root​ ​URL​ ​and​ ​the
ping​ ​endpoint​ ​all​ ​require​ ​a​ ​valid​ ​authentication​ ​token​ ​in​ ​the​ ​header​ ​to​ ​identify​ ​the​ ​user_id.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

14/18

4.4.3​ ​mg-rest-3d
This is a specific service for providing access to the 3D model predictions that have been made by
TADbit. The output is in the form required by TADkit for display with the browser. The data is stored
within the HDF5 file format described in D4.4 section 5.2.1. The available endpoints are listed in table
4.4.3.1.

Endpoint Parameters Description

/mug/api/3dcoord Lists​ ​the​ ​available​ ​endpoints​ ​that​ ​can​ ​be
requested.

/mug/api/3dcoord/ping Returns​ ​the​ ​name​ ​of​ ​the​ ​service,​ ​version,
author,​ ​license,​ ​description,​ ​link​ ​to​ ​the​ ​root
for​ ​the​ ​service​ ​and​ ​the​ ​status.

/mug/api/3dcoord/resolutions file_id List​ ​all​ ​resolutions​ ​that​ ​models​ ​have​ ​been
calculated​ ​for

/mug/api/3dcoord/chromosomes file_id,​ ​res For​ ​a​ ​given​ ​resolution​ ​list​ ​the​ ​chromosomes
that​ ​models​ ​have​ ​been​ ​generated​ ​for

/mug/api/3dcoord/regions file_id,​ ​res,
chrom,​ ​start,
end

List​ ​regions​ ​within​ ​a​ ​given​ ​chromosomal​ ​area
that​ ​have​ ​structural​ ​predictions

/mug/api/3dcoord/models file_id,​ ​res,
region

Return​ ​all​ ​models​ ​from​ ​a​ ​region​ ​at​ ​a​ ​given
resolution

/mug/api/3dcoord/model file_id,​ ​res,
region,
model_id

Return​ ​a​ ​single​ ​model​ ​for​ ​a​ ​given​ ​resolution
from​ ​a​ ​specific​ ​region

Table​ ​4.4.2.1:​​ ​List​ ​of​ ​the​ ​endpoints​ ​available​ ​within​ ​the​ ​mg-rest-file​ ​server.​ ​With​ ​the​ ​exception​ ​of​ ​the​ ​root​ ​URL​ ​and​ ​the
ping​ ​endpoint​ ​all​ ​require​ ​a​ ​valid​ ​authentication​ ​token​ ​in​ ​the​ ​header​ ​to​ ​identify​ ​the​ ​user_id.

4.5​ ​Testing,​ ​Code​ ​Quality​ ​and​ ​Documentation
For each service that is developed the code matches the same standards that are defined in section
3.3 for coding standards, documentation and testing. Each service has a repository name of
“mg-rest-*” with documentation made available from the ReadTheDocs service. TravisCI and
Landscape.io are also used to ensure that the code quality is as high as possible. For testing it uses
pytest, and queries the endpoints in a similar manner to the tests described in section 3.3 for the DM
API.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

15/18

5​ ​SERVICE​ ​DEPLOYMENT

As the project is developing, the distributed infrastructure that underlies the compute platform for
the VRE is coupled with matching MuG data repositories. The RESTful architecture of DM services
make them fully accessible to VRE, who is responsible of centralizing metadata registration and
staging​ ​data​ ​across​ ​MuG​ ​infrastructures.

The updated DM data structure is fully compatible with VRE needs, and the metadata management is
now capable of being handled by the DM API. VRE is a client for the microservice, and it is granted
authorization​ ​via​ ​the​ ​access​ ​token​ ​of​ ​the​ ​end​ ​user.

MuG infrastructures are currently deployed in BSC, IRB and EMBASSY clouds. The DM streaming file

service (mg-rest-file) offers a uniformed entry to infrastructure storage facilities, allowing them to be

securely and remotely accessed by VRE, at the same time that provides ​Uniform Resource Identifiers

(URI​) for MuG resources. Internally, these resources are locally made available to the virtualized tool

instances by means of a dynamic contextualization system based on the network file system (NFS)

protocol,​ ​as​ ​detailed​ ​in-depth​ ​in​ ​the​ ​D5.2.

Demanding challenges have arisen with the development of a distributed data system, not only data

accessibility, privacy policies, hardware heterogeneity and public identifiers, mainly addressed in our

current DM plan, but also issues more intrinsically related to data transfer, such as data

synchronization. The implementation of an abstraction layer able to transparently deal with data

replication and coherence is under study, strategy that could definitely allow user data staging in and

out on the selected MuG infrastructure in an secure and effective way. In particular, the IRODS

technology, used already by EUDAT e-infrastructure is being tested to take care of lower level data

transfer​ ​layer.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

16/18

6​ ​CONCLUSIONS
The development of the DM API acts to support the work of the VRE and launching pipelines within
the COMPSs infrastructure. To serve the VRE, provide results for job submission and be responsive in
a RESTful environment it is crucial to have a dependable API. The DM API has been built in
collaboration with WP3 and WP5 so that it is best able to serve their needs. With openly available
documentation, continuous integration testing and automated code quality checking we have tried
to​ ​minimise​ ​the​ ​technical​ ​debt​ ​for​ ​future​ ​users​ ​and​ ​developers.

The development of a RESTful interface allows for the expansion of the MuG compute facility outside
of the current infrastructure. It also allows the development of external visualisation tools to view a
user's data. Allowing for access by external tools opens up the potential for community developers to
create​ ​new​ ​visualisations​ ​that​ ​aid​ ​in​ ​the​ ​understanding​ ​of​ ​experimental​ ​data.

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

17/18

7​ ​ANNEXES

7.1​ ​Abbreviations
DAC:​ ​Data​ ​access​ ​committee

EGA:​ ​European​ ​Genome-phenome​ ​Archive

ENA:​ ​European​ ​Nucleotide​ ​Archive

FISH:​ ​Fluorescence​ ​​in-situ​​ ​hybridisation

MINSEQE:​ ​Minimum​ ​Information​ ​about​ ​a​ ​high-throughput​ ​Sequencing​ ​Experiment

OME:​ ​Open​ ​Microscopy​ ​Environment

PDB:​ ​Protein​ ​Data​ ​Bank

PMES:​ ​Programming​ ​Model​ ​Enactment​ ​Service

SRA:​ ​Sequence​ ​read​ ​archive

VRE:​ ​Virtual​ ​Research​ ​Environment

WGBS:​ ​Whole​ ​Genome​ ​Bisulphate​ ​Sequencing

H2020-EINFRA-2015-1-​ ​676556
Deliverable​ ​4.5​ ​–​ ​Data​ ​Access​ ​API​ ​Specification​ ​and​ ​Implementation

18/18

