

Project Acronym: MuG

Project title: Multi-Scale Complex Genomics (MuG)

Call: H2020-EINFRA-2015-1

Topic: EINFRA-9-2015

Project Number: 676556

Project Coordinator: Institute for Research in Biomedicine (IRB Barcelona)

Project start date: 1/11/2015

Duration: 36 months

Deliverable 5.2: Computational infrastructure components

implementation

Lead beneficiary: Barcelona Supercomputing Center (BSC-CNS)

Dissemination level: PUBLIC

Due date: 01/11/2017

Actual submission date: 01/12/2017

Copyright© 2015-2018 The partners of the MuG Consortium

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 1

Document history

Version Contributor(s) Partner Date Comments

0.1 Josep Ll. Gelpí BSC 23/11/2017 First draft

0.2

Javier Alvarez

Laia Codó

Dmitry Repchevsky

BSC 29/11/2017

Second draft

1.0
 1/12/2017 Approved by

Supervisory Board

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 2

Table of contents

1. EXECUTIVE SUMMARY 3

2. INTRODUCTION 3

3. UPDATE OF COMPUTATIONAL INFRASTRUCTURE INITIAL DESIGN 4

4. PRESENT IMPLEMENTATION OF MuG SOFTWARE COMPONENTS 5

4.1. MuG Cloud deployments 6

4.2. Process management 6

4.2.1. Sun Grid Engine queuing system / oneflow 6

4.2.2. COMPSs programming model 7

4.2.3. Programming Model Enactment Service 8

4.3. Data repository components 11

4.3.1. Database managers 11

4.3.2. Integration of remote repositories 11

4.4. User access interfaces 12

4.4.1. Authentication 12

4.4.2. Personal workspace 13

4.4.2.1. Getting data 14

4.4.2.2. The workspace 14

4.5. User support tools 17

4.5.1. Discussion forum 17

4.5.2. Helpdesk 18

5. APPLICATIONS AND DATA OFFER 18

5.1. Analysis and Simulation tools 18

5.2. Protocol for integration of tools into MuG VRE 20

5.2.1. Tools registration 21

5.2.2. Tools execution 21

5.3. Data visualization 22

5.4. MuG Data repository 23

6. DEVELOPMENT ROADMAP 25

6.1. User workspace 25

6.2. Computational layer 25

6.3. Data and Storage 25

7. MuG usage policies 26

7.1. User access policy 26

7.2. Tool developer accounts 27

8. ANNEX 29

8.1. DMP metadata: data type and file types 29

8.2. Documents, software and data models 30

8.3. Usage statistics 31

9. REFERENCES 33

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 3

1. EXECUTIVE SUMMARY

MuG Virtual Research Environment should provide the members of the 3D/4D genome community with

an adequate combination of relevant information, data, and computational tools. The combination

should help, with a friendly access, the researcher to analyse data, either from repositories, or obtained

from experiment or simulation; combine and compare such analysis results with related studies and

reference data.

MuG VRE prototype was presented in Sept 2016, and described, together with all design considerations

in D5.1. This document describes the implementation of the software components in the first beta

release of MuG Virtual Research Environment portal (https://vre.multiscalegenomics.eu). In brief, the

portal in based in a central workspace that allow the user to find together data and tools related to

research operations in 3D/4D genomics. User is offered a series of tool and visualization options and

may analyze together data coming from different levels of the 3D/4D genomics ecosystem. The portal

backend is responsible to channel the analysis or simulation operations to the appropriate

infrastructure, manage the execution, and collect the results back to the workspace. MuG VRE is

implemented in two cloud systems at IRB, and BSC premises, and was presented last 15th November

2017, in the conference “Multidimensional Genomics: The 3D/4D organization of chromatin” and is

open to users and developers. The document is organized as follows: Section 3 will recall the design

guidelines and highlight the most relevant improvements; section 4 describes in detail the

implementation of the software components and the state of the infrastructure; section 5 details of the

present offer of data and applications; and a glimpse of expected improvements during the last year of

the project (section 6). Usage policies both for users and developers are summarized in section 7, and

finally additional information as usage statistics recovered so far, addresses for software repositories,

and data types and formats understood by MuG VRE, are included in the Annexes section.

2. INTRODUCTION

3D/4D genomics community is a highly heterogeneous community where researches focus their work

in a specific scale of the problem without usually accessing to the others. The main reason for such

situation is the heterogeneity of data types and tools (see D3.1 for a more formal discussion). MuG

Virtual Research Environment has been designed to cover this heterogeneity with a common

infrastructure that allow users to work at their respective level of expertise but also provide a seamless

access to the other levels with the necessary degree of integration among data and tools. In summary,

MuG VRE puts together data coming from atomistic simulations, genome annotation, middle and high

scale 3D genomics, and cell biology imaging data, and establishes the necessary relationships among the

different levels to build an integrated view of the biological phenomena under study. The computational

infrastructure should assure interoperability of analysis tools and generate an integrated environment

with a seamless transition among the available data levels. The design of MuG VRE has been split in

several components, a 3D/4D browser (WP3), a data infrastructure (WP4), and a collection of

interoperable analysis tools (WP6), all components supported by a computational infrastructure (WP5).

MuG VRE computational infrastructure described here has the mission of managing the above

components, and integrate them in a single user environment, assuring the best efficiency in data

mobilization and process. The chosen strategy (see D5.1), will allow VRE members i) browse the available

data in an integrated way, ii) incorporate raw data to the VRE that will perform the appropriate analysis,

https://vre.multiscalegenomics.eu/

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 4

and incorporate results to MuG’s data repository, iii) use the VRE as an analysis infrastructure using the

available tools on existing or uploaded data, and iv) download data in the appropriate formats for in-

house further analysis.

MuG VRE infrastructure design was originally described in D5.1. The initial prototype has been active

since Oct 2016, and has been used as a test bed to develop software components and developments

produced in the project and the protocol and components for the integration of analysis and simulation

tools. After this period, the original design has been reconsidered and updated, and the components of

the infrastructure following the final design have been implemented as MuG VRE first beta version, and

released to the community (15th Nov 2017). We present here details of such implementation, the

present state of the infrastructure, and the roadmap of evolution in the last year of the MuG project.

MuG VRE is available at http://vre.multiscalegenomics.eu .

3. UPDATE OF COMPUTATIONAL INFRASTRUCTURE INITIAL DESIGN

MuG computational infrastructure has been designed to fulfil the following principles (taken from D5.1):

1. Flexible environment, able to adapt to the specific needs of the analysis tools (from WP6), both

in terms of software requirements, or computational resources.

2. Software scheduler(s), able to manage analysis workflows, and computational resources in a

transparent and adaptable manner. This will be an elastic infrastructure with automatic

adaptation to user loads.

3. Multi-scale execution. Analysis workflows could be executed either at the cluster level, in HPC

environments, or distributed infrastructures like EGI, and eventually in the forthcoming

European Science Cloud (EOSC) ecosystem.

4. Web-based access centered in the MuG multi-scale browser (designed in WP3). This will be

complemented by programmatic access using well-established interfaces including Galaxy. User

access will integrate the Authentication and Authorization Infrastructure being designed within

the Elixir initiative.

5. The infrastructure will be eventually interfaced to European e-infrastructures, including the EGI

for computation, and EUDAT for shared storage.

Figure 1 shows a general schema of MuG VRE infrastructure. The original design was largely maintained

and most changes constitute a refinement of the implementation based in the upgrade of the software

components. In particular the following updates are worth to be mentioned here. Full details of the

improvements will be described in the following sections.

● User workspace has been re-structured. User workspace constitutes the organization center for

the complete activity on the MuG VRE. The workspace is now presented as a collection of

analysis projects. This makes easier the access to the data and results, and allows to intuitively

filter the workspace contents and provide integrated presentations of the analysis results.

● PMES software scheduler has been rebuilt. PMES can now be controlled through a REST

interface. This simplifies the interaction between the workspace backend and the PMES

scheduler, allowing both systems to be physically separated. This is relevant as it opens the

possibility of remote scheduling of tool’s executions and makes possible to evolve to a truly

http://vre.multiscalegenomics.eu/

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 5

distributed VRE. Also PMES can now fully replace the use of traditional queuing systems (like

SGE) to manage execution demand.

● Building of the Virtual Machines have been improved to make then usable in different cloud

infrastructures.

● A protocol for the integration of tools in the VRE has been designed (see section 5.2). Python

based skeletons for new tools are now available, what simplifies the addition of new tools, and

also makes easier the communication of such tools with the workspace, as all tools share a

common interface to communicate with the VRE workspace.

● A data management plan (DMP) has been put in place (see D4.5). Data management inside MuG

VRE is being updated to the new protocol. Once completed MuG workspace will be available

through a uniform REST API, shared by all MuG components. This will again simplify data

transmission and will empower the distribution of the workload among several cloud systems,

and the availability of MuG’s data to third party

● User authentication have been derived to a centralized server based on Keycloak [1] software,

allowing to access to VRE using a variety of identity providers.

Figure 1. Layout of MuG's computational infrastructure

4. PRESENT IMPLEMENTATION OF MuG SOFTWARE COMPONENTS

The following section describes individually the implementation of software components used the initial

installation and their specific function.

https://paperpile.com/c/YW1QKh/qjn4

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 6

4.1. MuG Cloud deployments

MuG VRE infrastructure has been designed as a fully virtualized environment. This layout allows to

deploy new instances of the VRE Backend in new cloud infrastructures with minimal overhead. Besides,

tools deployed as virtual machines, allows to configure an elastic infrastructure, to cover peaks of

demand, or to configure complex workflow schemes. MuG VRE has been deployed in two cloud

infrastructures based on OpenNebula [2] (IRB and BSC), and the KVM hypervisor [3] (see Table 1).

Additionally, a small instance at the EMBL-EBI’s Embassy cloud has been deployed for testing purposes.

The generation of Virtual Machines has been adapted to make them compatible with the deployment

in both openNebula and openStack [9] cloud managers, allowing their use in a wider set of cloud

platforms, including Elixir Compute Platform and EGI providers.

Table 1. Present deployments of MuG-VRE

Institution Cloud infrastructure Specifications Deployed software

IRB OpenNebula 84 core, 1,5TB RAM

Production VRE
Development VRE

BSC OpenNebula 96 core, 1TB RAM, 90
TB storage

Development VRE
Authentication VM

EMBL-EBI OpenStack 16 core, 64 RAM, 1 TB
storage

PyCOMPS testing VMs
Selected tools

4.2. Process management

4.2.1. Sun Grid Engine queuing system / oneflow
Sun Grid Engine (SGE) [4] was designed to manage distributed software executions in heterogeneous

computational environments. SGE is used normally in cluster based infrastructures as a general process

scheduler. Capabilities of SGE include, among other, resource management, remote execution, parallel

execution management, interactive processes, monitoring and accounting, integration with Amazon EC2

or Hadoop. MuG VRE backend uses SGE to manage applications where no complex workflows are

necessary, although peaks of demand requiring the deployment of additional workers may be expected.

To adapt to MuG general infrastructure (Figure 1), a specific connection with OpenNebula cloud

manager has been set up through the use of oneFlow [5], a component of the OpenNebula framework

that allows managing Multi-VM application and auto-scaling. Figure 2 shows a schema of the structure

implemented in MuG VRE.

https://paperpile.com/c/YW1QKh/pko5
https://paperpile.com/c/YW1QKh/xFac
https://paperpile.com/c/YW1QKh/bnRU
https://paperpile.com/c/YW1QKh/NCtn
https://paperpile.com/c/YW1QKh/tlco

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 7

Figure 2. Layout of the integration of Sun Grid engine in MuG computational infrastructure

Each VRE tool execution is send to a separated SGE queue populated with multiple instances of the VM
where the tool implementation is encapsulated. The availability of these instances is controlled by
oneFlow, who dynamically deploys them according to a set of configurable system metrics like the
waiting time of the jobs, or the VM load. In this way, SGE queue workers can automatically grow or
shrink on demand, with the only restriction of having at least one VM already deployed and ready to
accepts jobs in each SGE queue.

4.2.2. COMPSs programming model
COMPS Superscalar (COMPSs) [6] is a programming model and runtime designed to simplify the
development and execution of distributed applications. COMPSs applications are programmed in a
completely sequential manner, but contain code annotations that identify certain methods as tasks that
can be executed in a remote location. Using these annotations, COMPSs runtime is able to automatically
detect and exploit the inherent parallelism of the application, and to execute it on various distributed
platforms, such as Grids, Clouds, and clusters.

COMPSs runtime implements a master-worker architecture that can be seen in Figure 3. Master and
workers are processes that can run on different virtual machines (VM) or physical nodes depending on
the characteristics of the underlying infrastructure. COMPSs runtime manages the available
computational resources in a completely transparent manner and, in the case of elastic infrastructures
such as Clouds, the runtime can dynamically create and destroy workers to tailor the computational
capacity to the application workload.

https://paperpile.com/c/YW1QKh/64cQ

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 8

Figure 3. COMPSs master-worker architecture.

COMPSs runtime is based on the Java programming language. However, COMPSs also supports C/C++
and Python applications through bindings. In the context of the MuG project, users mainly employ the
Python binding (also known as PyCOMPSs) due to their familiarity with this programming language.
COMPSs applications consist of a main program and a set of annotated methods. The main program is
the entry point of the application and is executed by the COMPSs master, whereas annotated methods
are executed remotely by workers. The main program of an application is executed sequentially, and
the master generates and stores a task object every time that it encounters a call to an annotated
method. Task objects consist of the annotated method code, and a description of its input and output
variables. These variables define the data dependencies between tasks and thus the order in which tasks
can be executed. For example, if task T1 writes a variable that is read by task T2, we say that there is a
read-after-write dependency between T1 and T2 that forces T2 to be executed only after T1 has finished.
Task objects are stored in a directed acyclic graph, called the dependency graph, where nodes represent
tasks and edges represent the dependencies between them. As tasks become dependency-free, they
are scheduled for execution in an available worker. The scheduling algorithm maximizes data locality by
allocating tasks where their input data is stored whenever possible. However, if a task cannot be
executed where its input data is located, the necessary data transfers are performed between workers
before task execution.

4.2.3. Programming Model Enactment Service
The Programming Model Enactment Service (PMES) [7] controls the execution of jobs in an underlying

Cloud platform through an Open Cloud Computing Interface (OCCI) [8] Server (Figure 4). The PMES offers

a REST interface with four main operations to manage jobs:

● createActivity: to launch new jobs
● terminateActivity: to cancel one or more jobs
● getActivityStatus: to get the status of one or more jobs
● getActivityReport: to obtain a report of one or more jobs

The PMES supports two types of jobs: single and COMPSs jobs. Single jobs consist of the execution of a
single command on a VM, while COMPSs jobs involve the execution of a COMPSs application using one
or more VMs. Single jobs provide an easy way of running already existing applications in the Cloud, while
COMPSs jobs allow for the execution of large parallel workflows. In the case of single jobs, the PMES
manages the only VM employed, whereas in the case of COMPSs jobs, the PMES manages the COMPSs
master VM, and the COMPSs runtime creates additional worker VMs if necessary.

https://paperpile.com/c/YW1QKh/PF4r
https://paperpile.com/c/YW1QKh/VVtL

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 9

Figure 4. Overview on the PMES execution infrastructure.

Images to create VMs are obtained from a Virtual Appliance Repository. Each of these VM images
contains all the binaries and libraries necessary for running a specific user application (or set of
applications). In this manner, binaries and libraries do not need to be installed every time that a job is
executed. In the case of COMPSs applications, the VM image also contains the COMPSs runtime.

VM images do not contain any application input data, as this is dynamically read from a Network Storage
system accessible from all VMs. In Mug implementation this storage system consists of a private
partition where users can store sensitive data, and a public partition where users can make data
available to others, or data from public repositories can be cached. Both input and output application
data is read and written from the Network Storage so that costly data transfers are avoided.

PMES job life cycle consists of three main phases: VM creation and contextualization, application
execution, and VM destruction. This life cycle thus begins when a createActivity request is received.
createActivity requests contain a JSON document that specifies the characteristics of the job to run.
An example of this JSON document can be seen in Figure 5. Among other information, this JSON
document provides the computational requirements of the job (i.e., CPU, memory, and storage), the
name of the virtual image to deploy in the Cloud infrastructure, the job type, the application that needs
to be executed and its arguments, and the mount points of the shared storage in the VM.

After receiving a createActivity request, the PMES asks the OCCI Server for the creation of a new
VM with the characteristics specified in the JSON document. The OCCI Server then contacts the Cloud
Provider to deploy and contextualize the new VM. Contextualization is carried out through cloud-init,
and consists of setting up the VM network, creating a user with the adequate permissions, generating
SSH keys, and mounting the Network Storage partitions that makes available the user’s workspace files
and the public data (more details in 4.3.1). The OCCI Server then informs PMES of the IP address of the
newly created VM, so that PMES can access the VM through SSH and execute the tool application (“app”
object in Figure 5). In the case of COMPSs jobs, the PMES also dynamically generates the required
COMPSs configuration files, and transfers them to the VM. In addition, the COMPSs runtime may contact

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 10

the OCCI Server at execution time to create new worker VMs depending on the job settings specified in
the JSON document and on the application computational load.

The PMES monitors the whole job life cycle, and periodically updates the job status and report with new
information. This information can be consulted at any time by means of the getActivityStatus and
getActivityReport requests. Once the application finishes, or after receiving a
terminateActivity request, the PMES orders the OCCI Server to destroy the previously created VM,
and the job life cycle ends. In the case of COMPSs jobs, the destruction of worker VMs is managed by
the COMPSs runtime also through the OCCI Server. The OCCI Server thus abstracts the PMES and
COMPSs runtime from the underlying infrastructure, and allows the execution of applications using any
OCCI compliant Cloud middleware, such as OpenNebula [2] and OpenStack [9].

[

 {

 "jobName": "processGenome_run0",

 "wallTime": "1440",

 "memory": 12,

 "cores": 4,

 "minimumVMs": 1,

 "maximumVMs": "1",

 "limitVMs": "1",

 "initialVMs": 1,

 "numNodes": "1",

 "disk": "1.0",

 "type": "COMPSs"

 "mountPoints": [

 {

 "target": "/MUG_USERDATA/",

 "device": "/MuG_userdata/MuGUSER59e5ead574743",

 "permissions": "rw"

 },

 {

 "target": "/MUG_PUBLIC/",

 "device": "/MuG/MuG_public",

 "permissions": "r"

 }

],

 "user": {

 "username": "vre21af1",

 "credentials": {

 "pem": "pmes.pem",

 "key": "pmes.key",

 "uid": "33",

 "gid": "33",

 "token": ""

 }

 },

 "img": {

 "imageName": "uuid_mg-process_62",

 "imageType": "small"

 },

 "app": {

 "name": "process_genome",

 "target": "/usr/local/code/mg-process-fastq",

 "source": "process_genome.py",

 "args": {

 "config": "/MUG_USERDATA/processGenome_run0/.config.json",

 "in_metadata": ”/MUG_USERDATA/processGenome_run0/.input_metadata.json",

 “out_metadata":"/MUG_USERDATA/processGenome_run0/.results.json"

 }

 },

 "compss_flags": {

 "flag": " --summary --base_log_dir=/MUG_USERDATA/processGenome_run0"

 }

 }

]

Figure 5. Example of a JSON document included in a createActivity request.

https://paperpile.com/c/YW1QKh/pko5
https://paperpile.com/c/YW1QKh/bnRU

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 11

4.3. Data repository components

4.3.1. Database managers
MuG VRE user’s data is divided in two types of repositories. Metadata is held in a MongoDB [9,10]

database in the MMB-IRB MongoDB server following the data model as defined in the data management

plan (DMP), which it is mainly based on a collection of data types, files types among other file related

attributes like the path where the file can be found in the file system (see D4.5).

The MongoDB server not only holds the metadata referring to user’s files, but also the necessary data

to correctly define tools and visualizers and how they interact with user’s files. MongoDB also keeps

track of user management, job execution, and other VRE functionalities like help, sample data

collections, etc. The MongoDB server where MuG data is hosted, contains also reference data as a full

copy of Protein Data Bank [11] , and Uniprot [12], and the trajectory database BiGNASim [13].

Data itself is stored in a standard filesystem in its original format. The filesystem is shared with the

virtualized environments via the network file system protocol. The filesystem layout is organized per

user so that the privacy of data is maintained. In fact, process managers specifically mount to the

deployed VM only the data belonging to the user executing the application. On the contrary, public

repository data is mounted read-only (more details on the contextualization in 4.2.3).

4.3.2. Integration of remote repositories
MuG aims to ease the access of users to relevant public data repositories, where MuG related studies

are been maintained (see D4.2 for details of such repositories). In the present version if MuG, metadata

from selected studies of ArrayExpress [14] have been stored in the MongoDB metadata repository.

Metadata stored correspond to that can be obtained in a automatic way from ArrayExpress REST API,

and allows user to browse and search for specific studies using MuG VRE interface, and download data

into the personal workspace for further analysis. See Figure 6 for a screenshot of MuG interface to

ArrayExpress metadata.

Figure 6. Screenshot of MuG interface to access ArrayExpress studies.

https://paperpile.com/c/YW1QKh/bnRU+fUG8
https://paperpile.com/c/YW1QKh/LEcm
https://paperpile.com/c/YW1QKh/OS06
https://paperpile.com/c/YW1QKh/nojs
https://paperpile.com/c/YW1QKh/yoVf

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 12

4.4. User access interfaces

4.4.1. Authentication
MuG VRE should assure a complete data privacy with respect to users data and activities. To this end,

access to the workspace and tools, either interactively or through REST APIs is made using an encrypted

channel (https, ssh), and users are authenticated on every access to the VRE.

MuG VRE uses Keycloak v3.3 identity server for the authentication. Keycloak implements OpenID

Connect 1.0 which allows for the Web access a standard username/password authentication based on

the code authorization flow of OAuth2, and a token based authentication for the MuG REST services

such as DMP APIs based on the implicit OAuth2 flow. VRE displays the authentication tokens in use and

allow to refresh them (see Figure 7.b) so that the user is able to authorize himself to the publicly available

DMP services via REST.

To ease user registration, additional external identity providers like Google and LinkedIn are accepted,

and Elixir Authorization and Authentication Infrastructure (AAI) is being integrated in short. Once the

authentication through those providers has taken place, MuG VRE creates an internal user record with

all security considerations in place independently on the identity providers used.

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 13

Figure 7. (a) VRE Login page. (b) User profile details including authorization tokens. (c) Schema of the MuG

centralized authorization service based on Keycloak

4.4.2. Personal workspace
MuG VRE personal workspace is the central environment for user activity. It is based on a filesystem-

based layout (see 4.4.2.2) where uploaded data and analysis results are available. The workspace gives

also access to analysis and simulation tools, selected according to data types and file types (formats),

recovering results as soon as they are available.

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 14

4.4.2.1. Getting data

Users can populate the workspace in several ways (see figure 8)

● Direct upload: Files from user’s local computer can be uploaded directly in the workspace

through a HTTPS protocol. The amount of data that can be uploaded in this way is limited due

to the technical limitations of the protocol.

● Create files: A text editor is available to create simple plain text files. This is intended for data or

metadata of reduced format that can be simply be typed in.

● Upload from an External URL: MuG VRE is able to access any given URL to download data into

the workspace. This is the recommended procedure to include bulky data, as the procedure is

performed in the background and no limit in size applies, being only limited by the user’s quota

available in their workspace. This option is also recommended for obtaining data from public

repositories.

● From repository: A selected series of studies from public repositories are available for browsing

in MuG VRE (see 4.3.2). Data from such studies can be incorporated directly into the workspace

for further processing.

Figure 8. Options to upload data into the workspace

MuG data files should be “validated” after upload. Validation includes a number of internal check on

formats, but also requires the user to fill in a series of metadata items. These include especially data

type and format selecting from a predefined list (see Annex 8.1). Data types and formats enable MuG

VRE to select the appropriate set of tools and visualizers usable with the uploaded files. Metadata for

files obtained from MuG tools are automatically obtained from the tools metadata manifest (see 5.4).

4.4.2.2. The workspace

MuG VRE workspace (see figure 9) is organized with a file system layout with an intuitive look-and-feel.

There are two types of data object: files and folders grouping files. The Uploads folder include all data

uploaded by the user in either manner (direct, edit, or URL). Data from repositories that is grouped

under Repository folder. The remaining folders correspond to projects, the result of executing a tool or

a workflow analysis. A new folder is generated for any new process started in the VRE. Next to data, type

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 15

and format is stated. Files can be filtered by any of the fields (name, format, data type, or project). Also,

a tools based filter allows to select only valid data input for a given tool.

Files are provided with three interactive toolkits (that may not appear when not appropriate). Those

toolkits contain the following options:

● File toolkit: Download data or folder, edit metadata, delete, pack and compress.

● Visualization toolkit: Available visualizers for the specific data type and format.

● Tools toolkit: Selected tools for the specific data type and format.

The contents of Visualization and Tools toolkits are adapted specifically to the file, using the available

metadata.

Figure 9. MuG VRE personal workspace

Tools toolkit allows to launch tools directly. For those procedures requiring more that one input file, files

can be selected anywhere in the workspace, and added to the execution list.

Selection of a specific tool triggers a configuration screen (see Figure 10 for an example using

PyDockDNA tool) where user can assign the selected data files to the appropriate input parameters of

the tool, define the necessary settings and launch the tool. Progress of the execution can be followed in

the main workspace.

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 16

Figure 10. Configuration screen for pyDockDNA.

Finally (figure 11) the MuG VRE provides constant tracking of the state of the operations performed and

the available space in the VRE.

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 17

Figure 11. Personal workspace log and workspace status.

4.5. User support tools

4.5.1. Discussion forum
A forum based on Discourse [15] software package is integrated in the VRE in order to enhance scientific

discussions relevant for the MuG community. Long-form chat rooms are organized by fields and tools,

and users can post comments or doubts, discuss the particularities of their system, propose hot topics,

etc.

Figure 12. Discussion forum main page

https://paperpile.com/c/YW1QKh/SKlx

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 18

4.5.2. Helpdesk
A mail based ticketing system is set up in VRE to put in contact the end user with both, tool developers,

and the VRE development team. It opens a channel for resolving doubts and issues related to the VRE

behaviour, the VRE implementation of any of the offered tools, and also to gather proposals and new

suggestions. Mails are directly addressed to the tool author/s as well as to the site admins.

5. APPLICATIONS AND DATA OFFER

5.1. Analysis and Simulation tools

The present table summarizes the tools integrated or in the way of being integrated in the VRE together

with some of their implementation details.

Table 2. Offer of tools available at MuG VRE.

Tool name Category Description Implementation

Chromatin
Dynamics

-Chromatin
-DNA

Chromatin Dynamics provides a user friendly way
to create individual 'beads-on-a-string' like
representations of a chromatin fiber.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

MC-DNA -DNA MC-DNA is a tool to rapidly create static and
dynamic B-DNA conformations of a sequence of
interest. With the use of a Monte Carlo algorithm
this tool runs up to 50x faster than conventional
Molecular Dynamics providing similar accuracy.
MC-DNA provides a three-dimensional all-atom
representation of the DNA structure with the
underlying sequence of interest.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

MDWeb
(MD Energy
refinement)
[16]

-DNA
-Protein
-RNA

MDWeb is based on well known simulation
programs like Amber, NAMD and Gromacs, and a
series of preparation and analysis tools, joined
together in a common interface.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

NAFlex [17] -DNA
-RNA

NAFlex provides a friendly environment to analyse
your own generated molecular dynamics
trajectories of nucleic acid structures.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

https://paperpile.com/c/YW1QKh/ZAIq
https://paperpile.com/c/YW1QKh/eUNl

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 19

Nucleosome
Dynamics
[18]

-DNA Nucleosome positioning plays a major role in
transcriptional regulation and most DNA-related
processes. The nucleosome dynamics server offers
different tools to analyze nucleosome positioning
from MNase-seq experimental data and perform
comparative experiments to account for the
transient and dynamic nature of nucleosome
positioning under different cellular states.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

3D
Consensus

-DNA
-Interactions
-Protein

Analyse a protein-DNA complex 3D structure to
identify interactions and study their impact on
specific binding by integrating experimental data
on the protein's DNA specificity.
3DConsensus allows the interpretation of
experimental data on DNA-binding specificity of a
protein through the analysis of a 3D structure of
the complex.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

Process
Genome [19]

-DNA Pipeline for generating index files for a genomic
sequence. Once the index files have been
generated for a given assembly then they can be
used by different pipelines/tools as they are
required. Based on the FASTA file of a genomic
sequence index files are generated for the
following indexers: Bowtie2, BWA, GEM

● Process manager
PMES

● tool skeleton
mg-tool API

● job type
PyCOMPSs

pyDock [20] -Interactions
-Protein

pyDock is a tool for the structural prediction of
protein-protein interactions.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

pyDockDNA
[21]

-DNA
-Interactions
-Protein

pyDockDNA is a tool for the structural prediction
of protein-DNA interactions.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

TADBit map
filter and
parse [22]

-Chromatin
-DNA

TADbit is a complete Python library to deal with all
steps to analyze, model and explore 3C-based
data. This TADbit step maps and filters Hi-C read
FASTQ files obtains a pseudo BAM with the aligned
reads.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

Tadbit
Normalize
[22]

-Chromatin
-DNA

TADbit is a complete Python library to deal with all
steps to analyze, model and explore 3C-based
data. This TADbit step normalize the aligned Hi-C
reads.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

Tadbit
Segment

-Chromatin
-DNA

TADbit is a complete Python library to deal with all
steps to analyze, model and explore 3C-based

● Process manager
SGE-oneflow

https://paperpile.com/c/YW1QKh/uXOC
https://paperpile.com/c/YW1QKh/cm5h
https://paperpile.com/c/YW1QKh/H3Lg
https://paperpile.com/c/YW1QKh/iBts
https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/e7mb

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 20

[22] data. This TADbit step finds Topologically
Associating Domains (TAD)s and segments

● tool skeleton
custom wrapper

● job type
single

Tadbit
Binning [22]

-Chromatin
-DNA

TADbit is a complete Python library to deal with all
steps to analyze, model and explore 3C-based
data. This TADbit step bins interaction matrices.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

Tadbit
Modeling
[22]

-Chromatin
-DNA

TADbit is a complete Python library to deal with all
steps to analyze, model and explore 3C-based
data. This TADbit step builds an ensemble of 3D
models from the interaction matrices, able to be
explored and visualized in TADkit.

● Process manager
SGE-oneflow

● tool skeleton
custom wrapper

● job type
single

Process
ChiP-seq
[19]

IN PROGRESS

-DNA Pipeline for processing ChIP-seq sequence reads to
identify regions of DNA-protein interactions.
Sequences are aligned to the genomic sequence
using BWA, BioBamBam2 is used to filter out
experimental artifacts and MACS2 is used for the
analysis of the alignments to identify regions of
DNA-protein interaction.

● Process manager
PMES

● tool skeleton
mg-tool API

● job type
PyCOMPSs

Process
RNA-seq
[19]

IN PROGRESS

-RNA

Align RNA-seq data pipeline. Gene expression
calling with Kallisto.

● Process manager
PMES

● tool skeleton
mg-tool API

● job type
PyCOMPSs

Process
WGBS [19]

IN PROGRESS

-DNA Align WGBS (Whole-Genome Bisulfite Sequencing)
data. Uses BS Seeker2 and Bowtie2

● Process manager
PMES

● tool skeleton
mg-tool API

● job type
PyCOMPSs

5.2. Protocol for integration of tools into MuG VRE

The modular and portable design of the VRE computational platform has lead to a complete
virtualization of the analyzes and pipelines integrated in VRE. Tools live encapsulated in virtual machines,
and the VRE core acts as a framework that delivers to them the input files and their metadata, sets up
the deployment procedure of the VMs, monitors the tool execution, and eventually gathers the output
files and their metadata once the execution has finished. In order to perform all these procedures, a
protocol defining how the VRE core communicates with the virtualized tools has been established. From
the point of view of a tool developer the protocol conforms the guidelines on how to integrate a new
tool in the VRE.

The protocol covers two sides of the integration, first the registration of a tool in the VRE, and second,
the execution of the same.

https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/cm5h
https://paperpile.com/c/YW1QKh/cm5h
https://paperpile.com/c/YW1QKh/cm5h

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 21

5.2.1. Tools registration
Metadata of tools available in the VRE is stored in the MongoDB tools collection (see section 4.3), to
allow the system to adequately manage the applications and the types of data to be used or produced.
To incorporate a tool into the VRE, the developer needs to prepare, along with the tool VM itself, a the
tool configuration JSON file. Tool requirements and particulars are included in this document. Examples
of the required metadata are the type of input files accepted by the tool, the arguments, the expected
output files, the type of application (single, COMPSs), the MuG cloud/s infrastructure in which the tool
VM is installed, the identifier of the tool VM, the application callable to be invoked inside the VM, the
computational resources (cores, memory) or type of process manager (PMES, SGE-oneflow) that should
be used. Check the schema and a example of the tool configuration JSON in Annex 8.2. With all this
information the VRE is able to:

● Suggest the tool given a set of input files in the user workspace
● Create the web form so that the user fills in the arguments before executing the tool
● Invoke the application callable via any of the process managers (PMES or SGE-oneflow) following

the procedure specified in the section 4.2
● Register the tool results in the DMP so output files are findable in the workspace for the user
● Recognize the ownership of the tool, so that tool developers have the adequate administrative

permissions over their tools

5.2.2. Tools execution
Once the tool is properly defined, it is ready to be launched by the VRE execution engine. Figure 13
covers the complete life cycle of a tool execution in VRE, and summarizes the data flow carried out in
each step.

Figure 13: Life cycle of a tool execution in VRE, and how the information is transferred from the VRE user to the

virtualized tools, and back to the VRE user.

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 22

The end user, via the web interface, defines the value that input files and arguments take in a particular
execution. Such information is transferred to the tool via two files called input metadata JSON and tool
configuration JSON (examples in Annex 8.2). The first contains the metadata corresponding to the input
files, which among other attributes like data types and formats, it includes the file path as it is to be seen
by the virtualized environment. The second file contains the parameter values for the application. When
the user clicks the “Compute” button, and according to the tool definition JSON, one of the two process
managers supported by VRE (PMES, SGE-oneflow) will be triggered as described in section 4.2. In short,
if SGE-oneflow is the election, a submit BASH file invoking the application callable will be submitted to
the queue, and the tool VM as part of that queue will accept and start the submit file execution (example
in Annex 8.2). If PMES is the selected, a REST call to the create activity endpoint will be performed, and
the tool VM will be deployed, contextualized, and finally, the application callable will be executed. Both
launchers end up executing in the tool VM a specific command line whose executable is the application
callable, and whose arguments are invariably:

[application callable]

 --in_metadata [input metadata JSON]

 --out_metadata [output metadata JSON]

 --config [tool configuration JSON]

If the application is not single but of type PyCOMPSs, the process manager will invoke the application
callable using PyCOMPSs libraries. In general to an instance of the the mg-tool API
(https://github.com/Multiscale-Genomics/mg-tool-api), a tool skeleton developed by WP6, whose
target is to ease tool integration by implementing a homogenous layer on top of the application code
that both, transparently deals with VRE communication, and absorbs possible application
heterogeneities. However, for some tools still to be migrated to mg-tool, a customized script that honors
the previously defined command line can be also executed.

Once the execution is finished, the last step performed by the VRE engine is to gather the tool output
files. At this stage results exists in the file system, but not in the metadata DMP repository unless the
appropriate metadata is supplied beforehand (data types, formats). In this case, when the tool has a
fixed number and name of result files, this metadata can be set as part of the tool definition JSON.
However, if results are dynamic, the tool should create an additional file (example in Annex 8.2) called
output metadata JSON file, containing such metadata that is imported by VRE, allowing to incorporate
the results to the workspace.

5.3. Data visualization

Data visualizers allow VRE users to interactively analyse their data inside the workspace. Following with

the modular philosophy of VRE, visualizers are treated in a similar way than tools are. They are again

defined in a MongoDB collection where accepted data types and formats are specified. However, they

are not installed as separated VMs but installed together with the VRE core.

Table 3 shows the available visualizers in MuG VRE￼

Visualizer Description Supported Data

https://github.com/Multiscale-Genomics/mg-tool-api

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 23

NGL Viewer
[23]

NGL Viewer is a web application for molecular visualization. WebGL
is employed to display molecules like proteins and DNA/RNA with a
variety of representations.

3D Structures and
MD trajectories
(PDB, DCD)

JBrowser
[24]

JBrowse is a fast, embeddable genome browser built completely
with JavaScript and HTML5, with optional run-once data formatting
tools written in Perl.

Genome sequence
annotation related
formats (BAM, BW,
GFF, GFF3)

TADKit [25] TADkit creates interactive 3D representations of chromatin
conformations modeled from 3C-based interaction matrices. The
user can overlay 1D and 2D tracks of genomic data to these 3D
views to directly evaluate the relationship between the 3D structure
of the genome and its biological function.

HiC analysis data
processed with
TADBit (JSON, TXT)

5.4. MuG Data repository
Table 4 summarizes the data currently available at MuG repositories. Data is accessible through the

specific interfaces. Table 5 summarized the additional annotation tracks available at JBrowse visualizer.

Table 4. Data currently available at MuG repositories

Data Set Origin and status Comments

Reference Databases

Protein Data Bank (MMB-IRB) RCSB. Weekly update MongoDB, REST API

Uniprot (MMB-IRB) EMBL-EBI. Monthly update MongoDB, REST API

Reference Genomes EMBL-EBI, Ensembl Raw files, and specific application

formats

Reference Annotation Tracks Diverse Displayed in JBrowse. See Table 5

MuG specific data and metadata

ArrayExpress Nucleosome

related experiments

EMBL-EBI ArrayExpress

(metadata test set)

MongoDB. Web access

MuG specific simulation set MuG partners Available through BigNASim

engine at MuG VRE web site

https://paperpile.com/c/YW1QKh/iBts+4FfD
https://paperpile.com/c/YW1QKh/iBts+4FfD+61ua
https://paperpile.com/c/YW1QKh/RJvw

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 24

Nucl. Acids Flexibility Data MuG partners Available at MuG VRE web site

Table 5. Annotation tracks available a MuG VRE’s genome browser

Data Source

Saccharomyces cerevisiae

Gene and Gene predictions
Saccharomyces Genome Database

[26]

Gene structure / UTRs / transcribed regions
Yassour et al, 2009 [27]

Gene Models / introns / 5’ 3’ UTR’s / unannotated transcripts Nagalakshimi et al. 2008 [28]

Transcription Start sites Zhang, Z and Dietrich FS. 200 [29]

Chromatin modifications Kirmizis A. et al. 2007 [30]

Nucleosome positions Mavrich et al. 2008 [31]

Digital genomic footprinting Hesselberth et al. 2009 [32]

H2A.Z nucleosome positions Albert et al. 2007 [33]

H2A/H2B, H2A.Z/H2A.Z, H2A.Z/H2B log2 ChIp chip ratio
Guillemette et al. 2005 [34]

H3K4ac_set1D_on_WT, set1D_H3K4ac_on_H3,

WT_H3K4ac_on_H3, WT_H3K4me3_on_H3
Guillemette et al. 2011 [35]

anti-Ac, H2AK7aci, H2BK16ac, H3K14ac, H3K18ac, H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H4K12ac, H4K16ac, H4K5ac,

H4K8ac, mock, RNA PolII ChIP_chip

Liu et al. 2005 [36]

predicted average nucleosome occupancy, predicted nucleosome

potential score, nucleosome sequence read count

Field et al. 2008 [37]

nucleosome positions, nucleoatac signal, nucleosome calling

occurrences
Schep et al. 2015 [38]

ORC, Mcm2p binding, ARS sequences Xu et al. 2006 [39]

ORC, ARS, Nucleosome positioning Eaton et al. 2010 [40]

TATA_elements Rhee and Ough 2012 [41]

Bur1, Cet1 (Capping enzyme), Ctk1

Elf1, Kin28 (TFIIH), Paf1, Pcf11, Ser2P (RNA Pol II), Ser5P (RNA Pol

II), Ser7P (RNA Pol II), Rpb3 (RNA Pol II), Spn1 (lws1), Spt16, Spt4,

Spt5, Spt6, Spt6deltaC, Tfg1 (TFIIF), TFIIB

Mayer et al. 2010 [42]

Gal4, Phd1, Rap1, Reb1 Rhee and Pugh 2011 [43]

Nucleosome architecture through cell cycle Deniz et al. 2016 [44]

Drosophila melanogaster

Genes, Transcripts

Chromatin types through protein binding sites Filion et al. 2010 [45]

Nucleosome organization Mavrich et al 2008 [46]

Homo sapiens

Refseq Genes

Gencode Genes

http://dx.doi.org/10.1038/srep19729

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 25

6. DEVELOPMENT ROADMAP

6.1. User workspace

Current workspace is the central point of the VRE, as it is where input and output files are listed, and

where tools and visualizers are selected. It reflects DMP metadata files, that in turn, are synchronized

with the local file system.

Future changes at the workspace go in the direction of globalizing the workspace, converting it into a

single virtual data space. A more integrative space where user can access data in local and remote MuG

instances, and selected public data, irrespective of the geographic location. Having this single data space

requires the implementation of a distributed data model, solving security issues related the

administration of file permissions and group roles in the DMP, and building the necessary infrastructure

for selecting the appropriate cloud instance for tool execution and making data accessible for the

process (see discussion in section 6.3).

6.2. Computational layer

MuG computational infrastructure is currently composed by three cloud implementations (BSC, IRB, EBI-

embassy). All MuG software components are ready to collaborate and operate remotely, hence the

interconnection of these environments is being set up and tested. As a proof of concept, the

development VRE instance located in the IRB is remotely deploying tools at the EBI-embassy

infrastructure. The communication is based on REST calls by which VRE posts to the remote PMES server

the tool job request, and the remote PMES instance deploys in the EBI-embassy cloud the targeted VM

tool, and triggers the execution using EBI provided data. The standardization and development of this

schema will allow to extend the number of supported e-infrastructures, opening the possibility of

including other European platforms like EGI.

6.3. Data and Storage

The main MuG VRE is in in the process of fully migrating to the recently established DMP data model,

based in the use of micro-services to manage data. After the migration is finished, all instances to MuG,

including the main VRE workspace will act as any other DMP API client, opening the possibility to share

data through a REST interface. However, apart from the management of files metadata, data itself needs

to be carefully handled among MuG infrastructures. Data transfer and replication should be minimized

in order to optimize procedure and resources, and data security and privacy need to be preserved along

the whole process.

The current data management plan covers data transfer based on REST services, which gives to VRE the

chance to smartly manage the resources across the infrastructures and ensure that data redundancy

rules fit the especial requirements of our system. In MuG, the data load of the three infrastructures is

not balanced, neither is their computational resources or their repository accessibility, and furthermore,

the resource’s end clients are diverse, they may accept streaming data (NGL viewer, simple HTTP

downloads, etc) or may require to stage it in advance (tools executions itself, custom visualizers, etc).

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 26

Considering these particularities, there exists several software solutions that can complement the DMP

strategy, so that VRE can delegate part of this data handling task. oneData [47], iRODS [48] (used in

EUDAT), or Owncloud globalize data access in distributed environments, and their inclusion is being

studied. Redundancy rules of these engines are partially configurable, and the accessibility to them as

local directories is also solved by most of them. However, challenges ahead include the dynamic and

user-specific contextualization of these systems.

7. MuG USAGE POLICIES

7.1. User access policy

Users sign in for free and access to the fully featured version of VRE. Registration is open, and as detailed

in section 4.4.1, can use either local MuG users, or external ID providers. Once logged in, all tools and

visualizers currently integrated in the VRE are widely available with no restrictions. However, each tool

implementation respects the licensing rules of the original application or pipeline code, hence, a

scenario where a certain tool is reserved to specific users is possible. Additionally, special conditions for

highly demanding users can be negotiated.

Regarding data storage, VRE guarantees a private and secure space for user’s personal data. VRE terms

of use (https://dev.multiscalegenomics.eu/applib/getTermsOfUse.php) defines the security policy

complied, where this data is, and who is responsible for it. A priori, the assigned quota is the same for

all users, 20GB, although extra space can be granted individually to specific users if they request so via

the help-desk section.

VRE defines three different user roles that modulate the administrative tasks a user has rights on.

Common users have no extra privileges, while tool developer users and admin users can better monitor

tool’s operations running behind the interface. Furthermore, admin users have a complete panel for

controlling the infrastructure usage (quotas, mails sent, etc) and administrating the rest of user’s

privileges

https://paperpile.com/c/YW1QKh/N6iG
https://paperpile.com/c/YW1QKh/8Vop
https://dev.multiscalegenomics.eu/applib/getTermsOfUse.php

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 27

 Figure 14: Main panel control for admin users

7.2. Tool developer accounts
Tool developer users have special access requirements, as they need to understand what’s going on
behind the VRE interface when fixing and debugging their tools within the platform. For helping on this
procedure, tool developers can:

● list the tools owned by the user, and visualize their tool definition JSONs to check the running
configuration

● consult in a simple pop up attached to each execution folder in the workspace, all the execution
associated files (input metadata JSON, configuration tool JSON, submit file and output metadata
JSON) that contains the data being transferred between VRE and the tool VM (Figure 15)

● check absolute paths for their files
● visualize the raw DMP metadata for all their files
● create and edit the tool help pages using a Bootstrap Markdown editor [49] able to easily style

the text and uploads images.

https://paperpile.com/c/YW1QKh/j9zS
https://paperpile.com/c/YW1QKh/j9zS
https://paperpile.com/c/YW1QKh/j9zS

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 28

Figure 15: Extra information available for tool developers when visiting file details in the workspace

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 29

8. ANNEXES

8.1. DMP data model: data types and file types

MuG data management plan (DMP) includes a data model for files metadata that, as described in D4.5,

includes the data type and the file type among other attributes to define the content and the format of

user’s file. Here, the complete collection of data types supported by VRE, and their associated file types.

Data Type Identifier Data Type Name Associated File Types

chromatin_3dmodel Chromatin 3D structure PDB

chromatin_3dmodel_ensemble Ensemble of chromatin 3D structures JSON

chromatin_compartments Chromatin compartments data TXT

chromatin_tads Chromatin TADs BED, TXT,

chromatin_traj Chromatin trajectory DCD

configuration_file Tool configuration file JSON, TXT, TSV

data_atac_seq ATAC-Seq FASTQ, BAM, BED, WIG

data_chip_seq ChIP-Seq BED, FASTQ, BAM, TSV

data_dna_methylation DNA methylation FASTQ, WIG, TSV

data_fish FISH data LIF, TIFF, PNG

data_mnase_seq MNase-Seq FASTQ, BAM, BED

data_rna_seq RNA-Seq FASTQ, TSV, HDF5, JSON

data_wgbs Whole Genome Bisulfite Sequencing

FASTQ, BAM, BAI, WIG, TSV,

TXT

docking_ranking Docking ranking score CSV, TXT, TSV

hic_biases HiC Biases PICKLE

hic_contacts_coverage HiC contacts coverage WIG, BW, TXT

hic_contacts_differential HiC differential contacts TSV

hic_contacts_matrix HiC contact matrix TXT, HDF5

hic_contacts_peaks HiC contact peaks TSV

hic_directionality HiC directionality index TXT

hic_reads HiC sequencing reads FASTQ

hic_sequences HiC aligned reads BAM

hic_tads_scale HiC TADs scaling factor WIG

md_restart MD restart file RST, CPT

na_md_atom_traj_coords Nucleic acid MD trajectory coordinates XTC, NETCDF, MDCRD

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 30

na_md_atom_traj_top Nucleic acid MD trajectory topology TOP, TPR, PARMTOP, PDB

na_md_cg_traj Nucleic acid MD CG trajectory MDCRD

na_structure Nucleic acid 3D structure PDB

na_traj Nucleic acid trajectory DCD, MDCRD

na_traj_coords Nucleic acid trajectory coordinates XTC, NETCDF, MDCRD

na_traj_top Nucleic acid topology TOP, TPR, PARMTOP, PDB

nucleosome_dynamics Nucleosome dynamics BW, GFF3, BED, WIG, RDATA

nucleosome_free_regions Nucleosome free regions BW, GFF3, BED, WIG

nucleosome_gene_phasing Nucleosome phasing BW, GFF3, BED, WIG

nucleosome_positioning Nucleosome positioning BW, GFF3, BED, WIG, TXT

nucleosome_stiffness Nucleosome stiffness BW, GFF3, BED, WIG

prot_dna_specificity Protein-DNA specificity TSV

prot_dna_structure Protein-DNA complex structure PDB

prot_structure Protein 3D structure PDB

sequence_annotation Sequence Annotation
BED, BB, BEDGRAPH, WIG, BW,

GFF, GFF3, GTF, VCF, TBI

sequence_dna DNA sequence FASTA, TXT

sequence_genomic Genomic sequence FASTA

sequence_mapping_index_bowtie Bowtie2 index files BT2, TXT

sequence_mapping_index_bwa BWA index files AMB, ANN, BWT, PAC, SA

sequence_mapping_index_gem Sequence mapping index GEM

sequence_mapping_index_kallisto Kallisto index file IDX

sequence_prot Protein sequence FASTA

sequence_rna RNA sequence FASTA

structure 3D structure PDB

tool_intermediate_file Tool Intermediate file TAR

tool_statistics Tool summary file TAR

tss_classification_by_nucleosomes Nucleosome TSS BW, GFF3, BED, WIG

8.2. Documents, Software and data models

JSON schema and example of tool definition configuration file, compulsory for registering a now tool in

VRE

 1. tool definition JSON - schema

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json

 2. tool definition JSON - example

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 31

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.json

JSON examples for the configuration files sent between VRE and tool VMs during the tool life cycle

execution

 3. input metadata JSON - example

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metadata.json

 4. configuration tool JSON - example

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.config.json

 5. submit file - examples

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.submit

 6. Output metadata JSON - example

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.json

8.3. Usage statistics

Last year usage statistics reflect the major VRE events (April 2017 workshop, November 2017 Demo

and Release). Coinciding with these events, visitors and new users increase, currently reaching 43

registered users.

Total number of registered users
● Admin users
● Tool developers
● Common users

43
 2
12
29

Total used space / total quota 54/860 GB

Figure 13. VRE page views during last year filtering out partner institution domains

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metadata.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metadata.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.config.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.config.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.submit
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.submit
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.json

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 32

Figure 13. Last year VRE sessions (time user actively engaged in the website) and users (who have initiated at

least one session)

Figure 14. VRE tools usage since the release (last 15 days). (*) Correspond to those tools internally launched by

VRE when I. importing a remote resource into workspace, II. importing a BAM file

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 33

9.REFERENCES

1. Keycloak Authorization server. Available: http://www.keycloak.org/
2. OpenNebula – Flexible Enterprise Cloud Made Simple. Available: https://opennebula.org/
3. KVM. Available: https://www.linux-kvm.org
4. Open Grid Scheduler. SourceForge. Available: https://sourceforge.net/projects/gridscheduler/
5. OneFlow — OpenNebula 4.12.1 documentation. Available:

http://docs.opennebula.org/4.12/advanced_administration/application_flow_and_auto-
scaling/oneapps_overview.html

6. Lezzi D, Rafanell R, Carrión A, Espert IB, Hernández V, Badia RM. Enabling e-Science Applications
on the Cloud with COMPSs. Lecture Notes in Computer Science. 2012. pp. 25–34.
doi:10.1007/978-3-642-29737-3_4

7. Lordan F, Tejedor E, Ejarque J, Rafanell R, Álvarez J, Marozzo F, et al. ServiceSs: An Interoperable
Programming Framework for the Cloud. Int J Grid Util Comput. 2013;12: 67–91.
doi:10.1007/s10723-013-9272-5

8. Open Cloud Computing Interface – Open Community. Available: http://occi-wg.org/
9. OpenStack Open Source Cloud Computing Software. Available: https://www.openstack.org/
10. MongoDB for GIANT Ideas. Available: https://www.mongodb.com/index
11. Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28: 235–242.

doi:10.1093/nar/28.1.235
12. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res.

2016;45: D158–D169. doi:10.1093/nar/gkw1099
13. Hospital A, Andrio P, Cugnasco C, Codo L, Becerra Y, Dans PD, et al. BIGNASim: a NoSQL

database structure and analysis portal for nucleic acids simulation data. Nucleic Acids Res.
2016;44: D272–8. doi:10.1093/nar/gkv1301

14. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Amy Tang Y, Williams E, et al. ArrayExpress
update—simplifying data submissions. Nucleic Acids Res. 2014;43: D1113–D1116.
doi:10.1093/nar/gku1057

15. Discourse - Civilized Discussion. Available: https://discourse.org/
16. Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL. MDWeb and MDMoby: an

integrated web-based platform for molecular dynamics simulations. Bioinformatics. 2012;28:
1278–1279. doi:10.1093/bioinformatics/bts139

17. Hospital A, Faustino I, Collepardo-Guevara R, González C, Gelpí JL, Orozco M. NAFlex: a web
server for the study of nucleic acid flexibility. Nucleic Acids Res. 2013;41: W47–55.
doi:10.1093/nar/gkt378

18. nucleR. In: Bioconductor. Available: http://bioconductor.org/packages/nucleR/
19. Multiscale-Genomics. Multiscale-Genomics/mg-process-fastq. In: GitHub. Available:

https://github.com/Multiscale-Genomics/mg-process-fastq
20. Cheng TM-K, Blundell TL, Fernandez-Recio J. pyDock: electrostatics and desolvation for effective

scoring of rigid-body protein-protein docking. Proteins. 2007;68: 503–515.
doi:10.1002/prot.21419

21. Multiscale-Genomics. Multiscale-Genomics/pydockdna_tool. Available:
https://github.com/Multiscale-Genomics/pydockdna_tool

22. Serra F, Baù D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. Automatic analysis and 3D-
modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS
Comput Biol. 2017;13: e1005665. doi:10.1371/journal.pcbi.1005665

23. Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic
Acids Res. 2015;43: W576–9. doi:10.1093/nar/gkv402

24. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic web
platform for genome visualization and analysis. Genome Biol. 2016;17: 66. doi:10.1186/s13059-

http://paperpile.com/b/YW1QKh/qjn4
http://paperpile.com/b/YW1QKh/qjn4
http://paperpile.com/b/YW1QKh/pko5
http://paperpile.com/b/YW1QKh/pko5
http://paperpile.com/b/YW1QKh/xFac
http://paperpile.com/b/YW1QKh/xFac
http://paperpile.com/b/YW1QKh/NCtn
http://paperpile.com/b/YW1QKh/NCtn
http://paperpile.com/b/YW1QKh/tlco
http://paperpile.com/b/YW1QKh/tlco
http://docs.opennebula.org/4.12/advanced_administration/application_flow_and_auto-scaling/oneapps_overview.html
http://docs.opennebula.org/4.12/advanced_administration/application_flow_and_auto-scaling/oneapps_overview.html
http://paperpile.com/b/YW1QKh/64cQ
http://paperpile.com/b/YW1QKh/64cQ
http://paperpile.com/b/YW1QKh/64cQ
http://paperpile.com/b/YW1QKh/64cQ
http://paperpile.com/b/YW1QKh/PF4r
http://paperpile.com/b/YW1QKh/PF4r
http://paperpile.com/b/YW1QKh/PF4r
http://paperpile.com/b/YW1QKh/PF4r
http://paperpile.com/b/YW1QKh/VVtL
http://paperpile.com/b/YW1QKh/VVtL
http://paperpile.com/b/YW1QKh/bnRU
http://paperpile.com/b/YW1QKh/bnRU
http://paperpile.com/b/YW1QKh/fUG8
http://paperpile.com/b/YW1QKh/fUG8
http://paperpile.com/b/YW1QKh/LEcm
http://paperpile.com/b/YW1QKh/LEcm
http://dx.doi.org/10.1093/nar/28.1.235
http://paperpile.com/b/YW1QKh/OS06
http://paperpile.com/b/YW1QKh/OS06
http://dx.doi.org/10.1093/nar/gkw1099
http://paperpile.com/b/YW1QKh/nojs
http://paperpile.com/b/YW1QKh/nojs
http://paperpile.com/b/YW1QKh/nojs
http://paperpile.com/b/YW1QKh/nojs
http://paperpile.com/b/YW1QKh/yoVf
http://paperpile.com/b/YW1QKh/yoVf
http://paperpile.com/b/YW1QKh/yoVf
http://paperpile.com/b/YW1QKh/yoVf
http://paperpile.com/b/YW1QKh/SKlx
http://paperpile.com/b/YW1QKh/SKlx
http://paperpile.com/b/YW1QKh/ZAIq
http://paperpile.com/b/YW1QKh/ZAIq
http://paperpile.com/b/YW1QKh/ZAIq
http://paperpile.com/b/YW1QKh/ZAIq
http://paperpile.com/b/YW1QKh/eUNl
http://paperpile.com/b/YW1QKh/eUNl
http://paperpile.com/b/YW1QKh/eUNl
http://paperpile.com/b/YW1QKh/eUNl
http://paperpile.com/b/YW1QKh/uXOC
http://paperpile.com/b/YW1QKh/uXOC
http://paperpile.com/b/YW1QKh/cm5h
http://paperpile.com/b/YW1QKh/cm5h
https://github.com/Multiscale-Genomics/mg-process-fastq
http://paperpile.com/b/YW1QKh/H3Lg
http://paperpile.com/b/YW1QKh/H3Lg
http://paperpile.com/b/YW1QKh/H3Lg
http://paperpile.com/b/YW1QKh/H3Lg
http://paperpile.com/b/YW1QKh/iBts
http://paperpile.com/b/YW1QKh/iBts
https://github.com/Multiscale-Genomics/pydockdna_tool
http://paperpile.com/b/YW1QKh/e7mb
http://paperpile.com/b/YW1QKh/e7mb
http://paperpile.com/b/YW1QKh/e7mb
http://paperpile.com/b/YW1QKh/e7mb
http://paperpile.com/b/YW1QKh/4FfD
http://paperpile.com/b/YW1QKh/4FfD
http://dx.doi.org/10.1093/nar/gkv402
http://paperpile.com/b/YW1QKh/61ua
http://paperpile.com/b/YW1QKh/61ua
http://paperpile.com/b/YW1QKh/61ua
http://paperpile.com/b/YW1QKh/61ua
http://dx.doi.org/10.1186/s13059-016-0924-1

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 34

016-0924-1
25. TADbit @ CNAG/CRG. Available: http://sgt.cnag.cat/3dg/tadbit
26. Saccharomyces Genome Database. Available: http://www.yeastgenome.org
27. Yassour M1, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, Schroth G, Luo S, Khrebtukova

I, Gnirke A, Nusbaum C, Thompson DA, Friedman N, Regev A. Ab initio construction of a
eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A.
2009. 106(9):3264-9.

28. Nagalakshmi U1, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional
landscape of the yeast genome defined by RNA sequencing. Science. 2008 6;320(5881):1344-
1349.

29. Zhang Z, Dietrich FS. Mapping of transcription start sites in Saccharomyces cerevisiae using 5'
SAGE. Nucleic Acids Res. 2005. 33(9):2838-51

30. Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bähler J, Green RD,
Kouzarides T. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation.
Nature. 2007; 449(7164):928-932.

31. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF A
barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast
genome. Genome Res. 2008 18(7):1073-1083.

32. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S,
Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA. Global mapping of protein-DNA
interactions in vivo by digital genomic footprinting. Nat Methods. 2009. 6(4):283-289.

33. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF. Translational and
rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature.
2007;446(7135):572-576.

34. Guillemette B, Bataille AR, Gévry N, Adam M, Blanchette M, Robert F, Gaudreau L. Variant
histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates
nucleosome positioning. PLoS Biol. 2005; 3(12):e384.

35. Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E,
Thibault P, Verreault A, Festenstein RJ. H3 lysine 4 is acetylated at active gene promoters and
is regulated by H3 lysine 4 methylation. PLoS Genet. 2011;7(3):e1001354.

36. Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ. Single-nucleosome
mapping of histone modifications in S. cerevisiae. PLoS Biol. 2005; 3(10):e328.

37. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E. Distinct
modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS
Comput Biol. 2008; 4(11):e1000216.

38. Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ. Structured
nucleosome fingerprints enable high-resolution mapping of chromatin architecture within
regulatory regions. Genome Res. 2015; 25(11):1757-1770.

39. Xu W, Aparicio JG, Aparicio OM, Tavaré S. Genome-wide mapping of ORC and Mcm2p binding
sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae.
BMC Genomics. 2006 26;7:276.

40. Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines
replication origins. Genes Dev. 2010;24(8):748-753

41. Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation
complexes. Nature. 2012 18;483(7389):295-301.

42. Mayer A, Lidschreiber M, Siebert M, Leike K, Söding J, Cramer P. Uniform transitions of the
general RNA polymerase II transcription complex. Nat Struct Mol Biol. 2010; 17(10):1272-1278.

43. Rhee HS, Pugh BF Comprehensive genome-wide protein-DNA interactions detected at single-
nucleotide resolution. Cell. 2011 9;147(6):1408-1419.

44. Deniz Ö, Flores O, Aldea M, Soler-López M, Orozco M. Nucleosome architecture throughout the
cell cycle. Sci Rep. 2016 28;6:19729.

45. Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro

http://dx.doi.org/10.1186/s13059-016-0924-1
http://paperpile.com/b/YW1QKh/RJvw
http://paperpile.com/b/YW1QKh/RJvw
http://paperpile.com/b/YW1QKh/RJvw

MuG–H2020-EINFRA-2015-1- 6

 Deliverable 5.2 – Implementation of software components 35

IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B. Systematic protein location mapping reveals
five principal chromatin types in Drosophila cells. Cell. 2010 15;143(2):212-24.

46. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster
SC, Gilmour DS, Albert I, Pugh BF. Nucleosome organization in the Drosophila genome Nature.
2008 15;453(7193):358-62.

47. Onedata. Available: https://onedata.org
48. iRODS. Available: https://irods.org/
49. bootstrap-markdown-editor. Available: https://github.com/inacho/bootstrap-markdown-

editor

http://paperpile.com/b/YW1QKh/N6iG
http://paperpile.com/b/YW1QKh/N6iG
http://paperpile.com/b/YW1QKh/8Vop
http://paperpile.com/b/YW1QKh/8Vop
http://paperpile.com/b/YW1QKh/j9zS
http://paperpile.com/b/YW1QKh/j9zS
http://paperpile.com/b/YW1QKh/j9zS
http://paperpile.com/b/YW1QKh/j9zS
https://github.com/inacho/bootstrap-markdown-editor

