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1. EXECUTIVE SUMMARY 
 

MuG Virtual Research Environment should provide the members of the 3D/4D genome community with 

an adequate combination of relevant information, data, and computational tools. The combination 

should help, with a friendly access, the researcher to analyse data, either from repositories, or obtained 

from experiment or simulation; combine and compare such analysis results with related studies and 

reference data.  

MuG VRE prototype was presented in Sept 2016, and described, together with all design considerations 

in D5.1. This document describes the implementation of the software components in the first beta 

release of MuG Virtual Research Environment portal (https://vre.multiscalegenomics.eu). In brief, the 

portal in based in a central workspace that allow the user to find together data and tools related to 

research operations in 3D/4D genomics. User is offered a series of tool and visualization options and 

may analyze together data coming from different levels of the 3D/4D genomics ecosystem. The portal 

backend is responsible to channel the analysis or simulation operations to the appropriate 

infrastructure, manage the execution, and collect the results back to the workspace. MuG VRE is 

implemented in two cloud systems at IRB, and BSC premises, and was presented last 15th November 

2017, in the conference “Multidimensional Genomics: The 3D/4D organization of chromatin” and is 

open to users and developers. The document is organized as follows: Section 3 will recall the design 

guidelines and highlight the most relevant improvements; section 4 describes in detail the 

implementation of the software components and the state of the infrastructure; section 5 details of the 

present offer of data and applications; and a glimpse of expected improvements during the last year of 

the project (section 6). Usage policies both for users and developers are summarized in section 7, and 

finally additional information as usage statistics recovered so far, addresses for software repositories, 

and data types and formats understood by MuG VRE, are included in the Annexes section. 

 

2. INTRODUCTION 
 

3D/4D genomics community is a highly heterogeneous community where researches focus their work 

in a specific scale of the problem without usually accessing to the others. The main reason for such 

situation is the heterogeneity of data types and tools (see D3.1 for a more formal discussion). MuG 

Virtual Research Environment has been designed to cover this heterogeneity with a common 

infrastructure that allow users to work at their respective level of expertise but also provide a seamless 

access to the other levels with the necessary degree of integration among data and tools. In summary, 

MuG VRE puts together data coming from atomistic simulations, genome annotation, middle and high 

scale 3D genomics, and cell biology imaging data, and establishes the necessary relationships among the 

different levels to build an integrated view of the biological phenomena under study. The computational 

infrastructure should assure interoperability of analysis tools and generate an integrated environment 

with a seamless transition among the available data levels. The design of MuG VRE has been split in 

several components, a 3D/4D browser (WP3), a data infrastructure (WP4), and a collection of 

interoperable analysis tools (WP6), all components supported by a computational infrastructure (WP5).  

MuG VRE computational infrastructure described here has the mission of managing the above 

components, and integrate them in a single user environment, assuring the best efficiency in data 

mobilization and process. The chosen strategy (see D5.1), will allow VRE members i) browse the available 

data in an integrated way, ii) incorporate raw data to the VRE that will perform the appropriate analysis, 

https://vre.multiscalegenomics.eu/
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and incorporate results to MuG’s data repository, iii) use the VRE as an analysis infrastructure using the 

available tools on existing or uploaded data, and iv) download data in the appropriate formats for in-

house further analysis.  

MuG VRE infrastructure design was originally described in D5.1. The initial prototype has been active 

since Oct 2016, and has been used as a test bed to develop software components and developments 

produced in the project and the protocol and components for the integration of analysis and simulation 

tools. After this period, the original design has been reconsidered and updated, and the components of 

the infrastructure following the final design have been implemented as MuG VRE first beta version, and 

released to the community (15th Nov 2017). We present here details of such implementation, the 

present state of the infrastructure, and the roadmap of evolution in the last year of the MuG project. 

MuG VRE is available at http://vre.multiscalegenomics.eu .  

 

3. UPDATE OF COMPUTATIONAL INFRASTRUCTURE INITIAL DESIGN 
 

MuG computational infrastructure has been designed to fulfil the following principles (taken from D5.1): 

1. Flexible environment, able to adapt to the specific needs of the analysis tools (from WP6), both 

in terms of software requirements, or computational resources.  

2. Software scheduler(s), able to manage analysis workflows, and computational resources in a 

transparent and adaptable manner. This will be an elastic infrastructure with automatic 

adaptation to user loads. 

3. Multi-scale execution. Analysis workflows could be executed either at the cluster level, in HPC 

environments, or distributed infrastructures like EGI, and eventually in the forthcoming 

European Science Cloud (EOSC) ecosystem. 

4. Web-based access centered in the MuG multi-scale browser (designed in WP3). This will be 

complemented by programmatic access using well-established interfaces including Galaxy. User 

access will integrate the Authentication and Authorization Infrastructure being designed within 

the Elixir initiative. 

5. The infrastructure will be eventually interfaced to European e-infrastructures, including the EGI 

for computation, and EUDAT for shared storage. 

  

Figure 1 shows a general schema of MuG VRE infrastructure. The original design was largely maintained 

and most changes constitute a refinement of the implementation based in the upgrade of the software 

components. In particular the following updates are worth to be mentioned here. Full details of the 

improvements will be described in the following sections.  

● User workspace has been re-structured. User workspace constitutes the organization center for 

the complete activity on the MuG VRE. The workspace is now presented as a collection of 

analysis projects. This makes easier the access to the data and results, and allows to intuitively 

filter the workspace contents and provide integrated presentations of the analysis results.  

● PMES software scheduler has been rebuilt. PMES can now be controlled through a REST 

interface. This simplifies the interaction between the workspace backend and the PMES 

scheduler, allowing both systems to be physically separated. This is relevant as it opens the 

possibility of remote scheduling of tool’s executions and makes possible to evolve to a truly 

http://vre.multiscalegenomics.eu/
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distributed VRE. Also PMES can now fully replace the use of traditional queuing systems (like 

SGE) to manage execution demand.  

● Building of the Virtual Machines have been improved to make then usable in different cloud 

infrastructures.  

● A protocol for the integration of tools in the VRE has been designed (see section 5.2). Python 

based skeletons for new tools are now available, what simplifies the addition of new tools, and 

also makes easier the communication of such tools with the workspace, as all tools share a 

common interface to communicate with the VRE workspace.  

● A data management plan (DMP) has been put in place (see D4.5). Data management inside MuG 

VRE is being updated to the new protocol. Once completed MuG workspace will be available 

through a uniform REST API, shared by all MuG components. This will again simplify data 

transmission and will empower the distribution of the workload among several cloud systems, 

and the availability of MuG’s data to third party  

● User authentication have been derived to a centralized server based on Keycloak [1] software, 

allowing to access to VRE using a variety of identity providers.  

 

 

Figure 1. Layout of MuG's computational infrastructure  

 

4. PRESENT IMPLEMENTATION OF MuG SOFTWARE COMPONENTS 
 

The following section describes individually the implementation of software components used the initial 

installation and their specific function.  

 

 

https://paperpile.com/c/YW1QKh/qjn4
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4.1. MuG Cloud deployments 
 

MuG VRE infrastructure has been designed as a fully virtualized environment. This layout allows to 

deploy new instances of the VRE Backend in new cloud infrastructures with minimal overhead. Besides, 

tools deployed as virtual machines, allows to configure an elastic infrastructure, to cover peaks of 

demand, or to configure complex workflow schemes. MuG VRE has been deployed in two cloud 

infrastructures based on OpenNebula [2] (IRB and BSC), and the KVM hypervisor [3] (see Table 1). 

Additionally, a small instance at the EMBL-EBI’s Embassy cloud has been deployed for testing purposes. 

The generation of Virtual Machines has been adapted to make them compatible with the deployment 

in both openNebula and openStack [9] cloud managers, allowing their use in a wider set of cloud 

platforms, including Elixir Compute Platform and EGI providers.  

Table 1. Present deployments of MuG-VRE 

Institution Cloud infrastructure Specifications Deployed software 

IRB OpenNebula 84 core, 1,5TB RAM 
 

Production VRE 
Development VRE 

BSC OpenNebula  96 core, 1TB RAM, 90 
TB storage 

Development VRE 
Authentication VM 

EMBL-EBI OpenStack 16 core, 64 RAM, 1 TB 
storage 

PyCOMPS testing VMs 
Selected tools 

 

4.2. Process management 
 

4.2.1. Sun Grid Engine queuing system / oneflow 
Sun Grid Engine (SGE) [4] was designed to manage distributed software executions in heterogeneous 

computational environments. SGE is used normally in cluster based infrastructures as a general process 

scheduler. Capabilities of SGE include, among other, resource management, remote execution, parallel 

execution management, interactive processes, monitoring and accounting, integration with Amazon EC2 

or Hadoop. MuG VRE backend uses SGE to manage applications where no complex workflows are 

necessary, although peaks of demand requiring the deployment of additional workers may be expected. 

To adapt to MuG general infrastructure (Figure 1), a specific connection with OpenNebula cloud 

manager has been set up through the use of oneFlow [5], a component of the OpenNebula framework 

that allows managing Multi-VM application and auto-scaling. Figure 2 shows a schema of the structure 

implemented in MuG VRE. 

https://paperpile.com/c/YW1QKh/pko5
https://paperpile.com/c/YW1QKh/xFac
https://paperpile.com/c/YW1QKh/bnRU
https://paperpile.com/c/YW1QKh/NCtn
https://paperpile.com/c/YW1QKh/tlco
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Figure 2.  Layout of the integration of Sun Grid engine in MuG computational infrastructure 

     

Each VRE tool execution is send to a separated SGE queue populated with multiple instances of the VM 
where the tool implementation is encapsulated. The availability of these instances is controlled by 
oneFlow, who dynamically deploys them according to a set of configurable system metrics like the 
waiting time of the jobs, or the VM load. In this way, SGE queue workers can automatically grow or 
shrink on demand, with the only restriction of having at least one VM already deployed and ready to 
accepts jobs in each SGE queue. 

 

4.2.2. COMPSs programming model        
COMPS Superscalar (COMPSs) [6] is a programming model and runtime designed to simplify the 
development and execution of distributed applications. COMPSs applications are programmed in a 
completely sequential manner, but contain code annotations that identify certain methods as tasks that 
can be executed in a remote location. Using these annotations, COMPSs runtime is able to automatically 
detect and exploit the inherent parallelism of the application, and to execute it on various distributed 
platforms, such as Grids, Clouds, and clusters. 

COMPSs runtime implements a master-worker architecture that can be seen in Figure 3. Master and 
workers are processes that can run on different virtual machines (VM) or physical nodes depending on 
the characteristics of the underlying infrastructure. COMPSs runtime manages the available 
computational resources in a completely transparent manner and, in the case of elastic infrastructures 
such as Clouds, the runtime can dynamically create and destroy workers to tailor the computational 
capacity to the application workload. 

 

https://paperpile.com/c/YW1QKh/64cQ
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Figure 3. COMPSs master-worker architecture. 

        

COMPSs runtime is based on the Java programming language. However, COMPSs also supports C/C++ 
and Python applications through bindings. In the context of the MuG project, users mainly employ the 
Python binding (also known as PyCOMPSs) due to their familiarity with this programming language. 
COMPSs applications consist of a main program and a set of annotated methods. The main program is 
the entry point of the application and is executed by the COMPSs master, whereas annotated methods 
are executed remotely by workers. The main program of an application is executed sequentially, and 
the master generates and stores a task object every time that it encounters a call to an annotated 
method. Task objects consist of the annotated method code, and a description of its input and output 
variables. These variables define the data dependencies between tasks and thus the order in which tasks 
can be executed. For example, if task T1 writes a variable that is read by task T2, we say that there is a 
read-after-write dependency between T1 and T2 that forces T2 to be executed only after T1 has finished. 
Task objects are stored in a directed acyclic graph, called the dependency graph, where nodes represent 
tasks and edges represent the dependencies between them. As tasks become dependency-free, they 
are scheduled for execution in an available worker. The scheduling algorithm maximizes data locality by 
allocating tasks where their input data is stored whenever possible. However, if a task cannot be 
executed where its input data is located, the necessary data transfers are performed between workers 
before task execution. 

 

4.2.3. Programming Model Enactment Service 
The Programming Model Enactment Service (PMES) [7]  controls the execution of jobs in an underlying 

Cloud platform through an Open Cloud Computing Interface (OCCI) [8] Server (Figure 4). The PMES offers 

a REST interface with four main operations to manage jobs: 

● createActivity: to launch new jobs  
● terminateActivity: to cancel one or more jobs  
● getActivityStatus: to get the status of one or more jobs  
● getActivityReport: to obtain a report of one or more jobs 

The PMES supports two types of jobs: single and COMPSs jobs. Single jobs consist of the execution of a 
single command on a VM, while COMPSs jobs involve the execution of a COMPSs application using one 
or more VMs. Single jobs provide an easy way of running already existing applications in the Cloud, while 
COMPSs jobs allow for the execution of large parallel workflows. In the case of single jobs, the PMES 
manages the only VM employed, whereas in the case of COMPSs jobs, the PMES manages the COMPSs 
master VM, and the COMPSs runtime creates additional worker VMs if necessary. 

https://paperpile.com/c/YW1QKh/PF4r
https://paperpile.com/c/YW1QKh/VVtL
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Figure 4. Overview on the PMES execution infrastructure. 

Images to create VMs are obtained from a Virtual Appliance Repository. Each of these VM images 
contains all the binaries and libraries necessary for running a specific user application (or set of 
applications). In this manner, binaries and libraries do not need to be installed every time that a job is 
executed. In the case of COMPSs applications, the VM image also contains the COMPSs runtime. 

VM images do not contain any application input data, as this is dynamically read from a Network Storage 
system accessible from all VMs. In Mug implementation this storage system consists of a private 
partition where users can store sensitive data, and a public partition where users can make data 
available to others, or data from public repositories can be cached. Both input and output application 
data is read and written from the Network Storage so that costly data transfers are avoided. 

PMES job life cycle consists of three main phases: VM creation and contextualization, application 
execution, and VM destruction. This life cycle thus begins when a createActivity request is received. 
createActivity requests contain a JSON document that specifies the characteristics of the job to run. 
An example of this JSON document can be seen in Figure 5. Among other information, this JSON 
document provides the computational requirements of the job (i.e., CPU, memory, and storage), the 
name of the virtual image to deploy in the Cloud infrastructure, the job type, the application that needs 
to be executed and its arguments, and the mount points of the shared storage in the VM. 

After receiving a createActivity request, the PMES asks the OCCI Server for the creation of a new 
VM with the characteristics specified in the JSON document. The OCCI Server then contacts the Cloud 
Provider to deploy and contextualize the new VM. Contextualization is carried out through cloud-init, 
and consists of setting up the VM network, creating a user with the adequate permissions, generating 
SSH keys, and mounting the Network Storage partitions that makes available the user’s workspace files 
and the public data (more details in 4.3.1). The OCCI Server then informs PMES of the IP address of the 
newly created VM, so that PMES can access the VM through SSH and execute the  tool application (“app” 
object in Figure 5). In the case of COMPSs jobs, the PMES also dynamically generates the required 
COMPSs configuration files, and transfers them to the VM. In addition, the COMPSs runtime may contact 
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the OCCI Server at execution time to create new worker VMs depending on the job settings specified in 
the JSON document and on the application computational load. 

The PMES monitors the whole job life cycle, and periodically updates the job status and report with new 
information. This information can be consulted at any time by means of the getActivityStatus and 
getActivityReport requests. Once the application finishes, or after receiving a 
terminateActivity request, the PMES orders the OCCI Server to destroy the previously created VM, 
and the job life cycle ends. In the case of COMPSs jobs, the destruction of worker VMs is managed by 
the COMPSs runtime also through the OCCI Server. The OCCI Server thus abstracts the PMES and 
COMPSs runtime from the underlying infrastructure, and allows the execution of applications using any 
OCCI compliant Cloud middleware, such as OpenNebula [2] and OpenStack [9]. 

[ 

    { 

        "jobName": "processGenome_run0", 

        "wallTime": "1440", 

        "memory": 12, 

        "cores": 4, 

        "minimumVMs": 1, 

        "maximumVMs": "1", 

        "limitVMs": "1", 

        "initialVMs": 1, 

        "numNodes": "1", 

        "disk": "1.0",         

        "type": "COMPSs" 

        "mountPoints": [ 

            { 

            "target": "/MUG_USERDATA/", 

            "device": "/MuG_userdata/MuGUSER59e5ead574743", 

            "permissions": "rw" 

            }, 

            { 

            "target": "/MUG_PUBLIC/", 

            "device": "/MuG/MuG_public", 

            "permissions": "r" 

            } 

        ], 

        "user": { 

            "username": "vre21af1", 

            "credentials": { 

                "pem": "pmes.pem", 

                "key": "pmes.key", 

                "uid": "33", 

                "gid": "33", 

                "token": "" 

            } 

        }, 

        "img": { 

            "imageName": "uuid_mg-process_62", 

            "imageType": "small" 

        }, 

        "app": { 

            "name": "process_genome", 

            "target": "/usr/local/code/mg-process-fastq", 

            "source": "process_genome.py", 

            "args": { 

              "config": "/MUG_USERDATA/processGenome_run0/.config.json", 

              "in_metadata": ”/MUG_USERDATA/processGenome_run0/.input_metadata.json", 

              “out_metadata":"/MUG_USERDATA/processGenome_run0/.results.json" 

            } 

 

        }, 

        "compss_flags": { 

            "flag": " --summary --base_log_dir=/MUG_USERDATA/processGenome_run0" 

        } 

    } 

] 

Figure 5. Example of a  JSON document included in a createActivity request. 

https://paperpile.com/c/YW1QKh/pko5
https://paperpile.com/c/YW1QKh/bnRU
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4.3. Data repository components 

 

4.3.1. Database managers 
MuG VRE user’s data is divided in two types of repositories. Metadata is held in a MongoDB [9,10] 

database in the MMB-IRB MongoDB server following the data model as defined in the data management 

plan (DMP), which it is mainly based on a collection of data types, files types among other file related 

attributes like the path where the file can be found in the file system (see D4.5). 

The MongoDB server not only holds the metadata referring to user’s files, but also the necessary data 

to correctly define tools and visualizers and how they interact with user’s files. MongoDB also keeps 

track of user management, job execution, and other VRE functionalities like help, sample data 

collections, etc. The MongoDB server where MuG data is hosted, contains also reference data as a full 

copy of Protein Data Bank [11] , and Uniprot [12], and the trajectory database BiGNASim [13]. 

Data itself is stored in a standard filesystem in its original format. The filesystem is shared with the 

virtualized environments via the network file system protocol. The filesystem layout is organized per 

user so that the privacy of data is maintained. In fact, process managers specifically mount to the 

deployed VM only the data belonging to the user executing the application. On the contrary, public 

repository data is mounted read-only (more details on the contextualization in 4.2.3). 

4.3.2. Integration of remote repositories 
MuG aims to ease the access of users to relevant public data repositories, where MuG related studies 

are been maintained (see D4.2 for details of such repositories). In the present version if MuG, metadata 

from selected studies of ArrayExpress [14] have been stored in the MongoDB metadata repository. 

Metadata stored correspond to that can be obtained in a automatic way from ArrayExpress REST API, 

and allows user to browse and search for specific studies using MuG VRE interface, and download data 

into the personal workspace for further analysis. See Figure 6 for a screenshot of MuG interface to 

ArrayExpress metadata. 

 

Figure 6. Screenshot of MuG interface to access ArrayExpress studies. 

 

https://paperpile.com/c/YW1QKh/bnRU+fUG8
https://paperpile.com/c/YW1QKh/LEcm
https://paperpile.com/c/YW1QKh/OS06
https://paperpile.com/c/YW1QKh/nojs
https://paperpile.com/c/YW1QKh/yoVf
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4.4. User access interfaces 

 

4.4.1. Authentication 
MuG VRE should assure a complete data privacy with respect to users data and activities. To this end, 

access to the workspace and tools, either interactively or through REST APIs is made using an encrypted 

channel (https, ssh), and users are authenticated on every access to the VRE. 

MuG VRE uses Keycloak v3.3 identity server for the authentication. Keycloak implements OpenID 

Connect 1.0 which allows for the Web access a standard username/password authentication based on 

the code authorization flow of OAuth2, and a token based authentication for the MuG REST services 

such as DMP APIs based on the implicit OAuth2 flow.  VRE displays the authentication tokens in use and 

allow to refresh them (see Figure 7.b) so that the user is able to authorize himself to the publicly available 

DMP services via REST. 

To ease user registration, additional external identity providers like Google and LinkedIn are accepted, 

and Elixir Authorization and Authentication Infrastructure (AAI) is being integrated in short. Once the 

authentication through those providers has taken place, MuG VRE creates an internal user record with 

all security considerations in place independently on the identity providers used.  
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Figure 7. (a) VRE Login page. (b) User profile details including authorization tokens. (c)  Schema of the MuG 

centralized authorization service based on Keycloak  

 

4.4.2. Personal workspace 
MuG VRE personal workspace is the central environment for user activity. It is based on a filesystem-

based layout (see 4.4.2.2) where uploaded data and analysis results are available. The workspace gives 

also access to analysis and simulation tools, selected according to data types and file types (formats), 

recovering results as soon as they are available. 

 



                                 

MuG–H2020-EINFRA-2015-1- 6  

 Deliverable 5.2 – Implementation of software components 14 

4.4.2.1. Getting data 

Users can populate the workspace in several ways (see figure 8) 

● Direct upload: Files from user’s local computer can be uploaded directly in the workspace 

through a HTTPS protocol. The amount of data that can be uploaded in this way is limited due 

to the technical limitations of the protocol.  

● Create files: A text editor is available to create simple plain text files. This is intended for data or 

metadata of reduced format that can be simply be typed in.  

● Upload from an External URL: MuG VRE is able to access any given URL to download data into 

the workspace. This is the recommended procedure to include bulky data, as the procedure is 

performed in the background and no limit in size applies, being only limited by the user’s quota 

available in their workspace. This option is also recommended for obtaining data from public 

repositories.  

● From repository: A selected series of studies from public repositories are available for browsing 

in MuG VRE (see 4.3.2). Data from such studies can be incorporated directly into the workspace 

for further processing.  

 

 

Figure 8. Options to upload data into the workspace 

 

MuG data files should be “validated” after upload. Validation includes a number of internal check on 

formats, but also requires the user to fill in a series of metadata items. These include especially data 

type and format selecting from a predefined list (see Annex 8.1). Data types and formats enable MuG 

VRE to select the appropriate set of tools and visualizers usable with the uploaded files. Metadata for 

files obtained from MuG tools are automatically obtained from the tools metadata manifest (see 5.4). 

4.4.2.2. The workspace 

MuG VRE workspace (see figure 9) is organized with a file system layout with an intuitive look-and-feel. 

There are two types of data object: files and folders grouping files. The Uploads folder include all data 

uploaded by the user in either manner (direct, edit, or URL). Data from repositories that is grouped 

under Repository folder. The remaining folders correspond to projects, the result of executing a tool or 

a workflow analysis. A new folder is generated for any new process started in the VRE. Next to data, type 
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and format is stated. Files can be filtered by any of the fields (name, format, data type, or project). Also, 

a tools based filter allows to select only valid data input for a given tool.  

Files are provided with three interactive toolkits (that may not appear when not appropriate). Those 

toolkits contain the following options: 

● File toolkit: Download data or folder, edit metadata, delete, pack and compress. 

● Visualization toolkit: Available visualizers for the specific data type and format. 

● Tools toolkit: Selected tools for the specific data type and format.  

The contents of Visualization and Tools toolkits are adapted specifically to the file, using the available 

metadata. 

 

 

Figure 9. MuG VRE personal workspace 

 

Tools toolkit allows to launch tools directly. For those procedures requiring more that one input file, files 

can be selected anywhere in the workspace, and added to the execution list.  

Selection of a specific tool triggers a configuration screen (see Figure 10 for an example using 

PyDockDNA tool) where user can assign the selected data files to the appropriate input parameters of 

the tool, define the necessary settings and launch the tool. Progress of the execution can be followed in 

the main workspace.  
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Figure 10. Configuration screen for pyDockDNA. 

 

Finally (figure 11) the MuG VRE provides constant tracking of the state of the operations performed and 

the available space in the VRE.  
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Figure 11. Personal workspace log and workspace status. 

4.5. User support tools 

 

4.5.1. Discussion forum 
A forum based on Discourse [15] software package is integrated in the VRE in order to enhance scientific 

discussions relevant for the MuG community.  Long-form chat rooms are organized by fields and tools, 

and users can post comments or doubts, discuss the particularities of their system, propose hot topics, 

etc.  

 

Figure 12. Discussion forum main page 

https://paperpile.com/c/YW1QKh/SKlx
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4.5.2. Helpdesk 
A mail based ticketing system is set up in VRE to put in contact the end user with both, tool developers, 

and the VRE development team. It opens a channel for resolving doubts and issues related to the VRE 

behaviour, the VRE implementation of any of the offered tools, and also to gather proposals and new 

suggestions. Mails are directly addressed to the tool author/s as well as to the site admins. 

 

5. APPLICATIONS AND DATA OFFER 
 

5.1. Analysis and Simulation tools 
 

The present table summarizes the tools integrated or in the way of being integrated in the VRE together 

with some of their implementation details.  

Table 2. Offer of tools available at MuG VRE. 

Tool name Category Description Implementation 

Chromatin 
Dynamics 

-Chromatin 
-DNA 

Chromatin Dynamics provides a user friendly way 
to create individual 'beads-on-a-string' like 
representations of a chromatin fiber.  
 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

MC-DNA -DNA MC-DNA is a tool to rapidly create static and 
dynamic B-DNA conformations of a sequence of 
interest. With the use of a Monte Carlo algorithm 
this tool runs up to 50x faster than conventional 
Molecular Dynamics providing similar accuracy. 
MC-DNA provides a three-dimensional all-atom 
representation of the DNA structure with the 
underlying sequence of interest.  

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

MDWeb 
(MD Energy 
refinement) 
[16] 

-DNA 
-Protein 
-RNA 

MDWeb is based on well known simulation 
programs like Amber, NAMD and Gromacs, and a 
series of preparation and analysis tools, joined 
together in a common interface. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

NAFlex [17] -DNA 
-RNA 

NAFlex provides a friendly environment to analyse 
your own generated molecular dynamics 
trajectories of nucleic acid structures. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

https://paperpile.com/c/YW1QKh/ZAIq
https://paperpile.com/c/YW1QKh/eUNl
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Nucleosome 
Dynamics  
[18] 

-DNA Nucleosome positioning plays a major role in 
transcriptional regulation and most DNA-related 
processes. The nucleosome dynamics server offers 
different tools to analyze nucleosome positioning 
from MNase-seq experimental data and perform 
comparative experiments to account for the 
transient and dynamic nature of nucleosome 
positioning under different cellular states. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

3D 
Consensus 
 

-DNA 
-Interactions 
-Protein 

Analyse a protein-DNA complex 3D structure to 
identify interactions and study their impact on 
specific binding by integrating experimental data 
on the protein's DNA specificity.    
3DConsensus allows the interpretation of 
experimental data on DNA-binding specificity of a 
protein through the analysis of a 3D structure of 
the  complex. 
 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Process 
Genome [19] 

-DNA Pipeline for generating index files for a genomic 
sequence. Once the index files have been 
generated for a given assembly then they can be 
used by different pipelines/tools as they are 
required. Based on the FASTA file of a genomic 
sequence index files are generated for the 
following indexers: Bowtie2, BWA, GEM 

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 

pyDock [20] -Interactions 
-Protein 

pyDock is a tool for the structural prediction of 
protein-protein interactions.  

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

pyDockDNA 
[21] 

-DNA 
-Interactions 
-Protein 

pyDockDNA is a tool for the structural prediction 
of protein-DNA interactions. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

TADBit map 
filter and 
parse [22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step maps and filters  Hi-C read 
FASTQ files obtains a pseudo BAM with the aligned 
reads. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Normalize  
[22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step normalize the aligned Hi-C 
reads. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Segment  

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 

● Process manager 
SGE-oneflow 

https://paperpile.com/c/YW1QKh/uXOC
https://paperpile.com/c/YW1QKh/cm5h
https://paperpile.com/c/YW1QKh/H3Lg
https://paperpile.com/c/YW1QKh/iBts
https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/e7mb
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[22] data. This TADbit step finds Topologically 
Associating Domains (TAD)s and segments 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Binning  [22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step bins  interaction matrices. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Tadbit 
Modeling  
[22] 

-Chromatin 
-DNA 

TADbit is a complete Python library to deal with all 
steps to analyze, model and explore 3C-based 
data. This TADbit step  builds an ensemble of 3D 
models from the interaction matrices, able to be 
explored and visualized in TADkit. 

● Process manager 
SGE-oneflow 

● tool skeleton 
custom wrapper 

● job type 
single 

Process 
ChiP-seq  
[19] 
 
 
IN PROGRESS 

 

-DNA Pipeline for processing ChIP-seq sequence reads to 
identify regions of DNA-protein interactions. 
Sequences are aligned to the genomic sequence 
using BWA, BioBamBam2 is used to filter out 
experimental artifacts and MACS2 is used for the 
analysis of the alignments to identify regions of 
DNA-protein interaction.  

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 

Process 
RNA-seq 
[19] 
 
 
IN PROGRESS 

-RNA 
 

Align RNA-seq data pipeline. Gene expression 
calling with Kallisto. 

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 

Process 
WGBS [19] 
 
IN PROGRESS 

 

-DNA Align WGBS (Whole-Genome Bisulfite Sequencing) 
data. Uses BS Seeker2 and Bowtie2 

 

● Process manager 
PMES 

● tool skeleton 
mg-tool API 

● job type 
PyCOMPSs 

 

5.2. Protocol for integration of tools into MuG VRE 

   
The modular and portable design of the VRE computational platform has lead to a complete 
virtualization of the analyzes and pipelines integrated in VRE. Tools live encapsulated in virtual machines, 
and the VRE core acts as a framework that delivers to them the input files and their metadata, sets up 
the deployment procedure of the VMs, monitors the tool execution, and eventually gathers the output 
files and their metadata once the execution has finished. In order to perform all these procedures, a 
protocol defining how the VRE core communicates with the virtualized tools has been established. From 
the point of view of a tool developer the protocol conforms the guidelines on how to integrate a new 
tool in the VRE. 

The protocol covers two sides of the integration, first the registration of a tool in the VRE, and second, 
the execution of the same. 

https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/e7mb
https://paperpile.com/c/YW1QKh/cm5h
https://paperpile.com/c/YW1QKh/cm5h
https://paperpile.com/c/YW1QKh/cm5h
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5.2.1. Tools registration 
Metadata of tools available in the VRE is stored in the MongoDB tools collection (see section 4.3), to 
allow the system to adequately manage the applications and the types of data to be used or produced. 
To incorporate a tool into the VRE, the developer needs to prepare, along with the tool VM itself, a the 
tool configuration JSON file. Tool requirements and particulars are included in this document. Examples 
of the required metadata are the type of input files accepted by the tool, the arguments, the expected 
output files, the type of application (single, COMPSs), the MuG cloud/s infrastructure in which the tool 
VM is installed, the identifier of the tool VM, the application callable to be invoked inside the VM, the 
computational resources (cores, memory) or type of process manager (PMES, SGE-oneflow) that should 
be used. Check the schema and a example of the tool configuration JSON in Annex 8.2. With all this 
information the VRE is able to: 

● Suggest the tool given a set of input files in the user workspace 
● Create the web form so that the user fills in the arguments before executing the tool 
● Invoke the application callable via any of the process managers (PMES or SGE-oneflow) following 

the procedure specified in the section 4.2 
● Register the tool results in the DMP so output files are findable in the workspace for the user 
● Recognize the ownership of the tool, so that tool developers have the adequate administrative 

permissions over their tools 
 

5.2.2. Tools execution 
Once the tool is properly defined, it is ready to be launched by the VRE execution engine. Figure 13 
covers the complete life cycle of a tool execution in VRE, and summarizes the data flow carried out in 
each step. 

 
Figure 13: Life cycle of a tool execution in VRE, and how the information is transferred from the VRE user to the 

virtualized tools, and back to the VRE user. 
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The end user, via the web interface, defines the value that input files and arguments take in a particular 
execution. Such information is transferred to the tool via two files called input metadata JSON and tool 
configuration JSON (examples in Annex 8.2). The first contains the metadata corresponding to the input 
files, which among other attributes like data types and formats, it includes the file path as it is to be seen 
by the virtualized environment. The second file contains the parameter values for the application. When 
the user clicks the “Compute” button, and according to the tool definition JSON, one of the two process 
managers supported by VRE  (PMES, SGE-oneflow) will be triggered as described in section 4.2. In short, 
if SGE-oneflow is the election, a submit BASH file invoking the application callable will be submitted to 
the queue, and the tool VM as part of that queue will accept and start the submit file execution (example 
in Annex 8.2). If PMES is the selected, a REST call to the create activity endpoint will be performed, and 
the tool VM will be deployed, contextualized, and finally, the application callable will be executed. Both 
launchers end up executing in the tool VM a specific command line whose executable is the application 
callable, and whose arguments are invariably: 

[application callable] 

               --in_metadata    [input metadata JSON] 

               --out_metadata [output metadata JSON]  

               --config                [tool configuration JSON] 

 

If the application is not single but of type PyCOMPSs, the process manager will invoke the application 
callable using PyCOMPSs libraries. In general to an instance of the the mg-tool API 
(https://github.com/Multiscale-Genomics/mg-tool-api), a tool skeleton developed by WP6, whose 
target is to ease tool integration by implementing a homogenous layer on top of the application code 
that both, transparently deals with VRE communication, and absorbs possible application 
heterogeneities. However, for some tools still to be migrated to mg-tool, a customized script that honors 
the previously defined command line can be also executed. 

Once the execution is finished, the last step performed by the VRE engine is to gather the tool output 
files. At this stage results exists in the file system, but not in the metadata DMP repository unless the 
appropriate metadata is supplied beforehand (data types, formats). In this case, when the tool has a 
fixed number and name of result files, this metadata can be set as part of the tool definition JSON. 
However, if results are dynamic, the tool should create an additional file (example in Annex 8.2) called 
output metadata JSON file, containing such metadata that is imported by VRE, allowing to incorporate 
the results to the workspace.  

 

5.3. Data visualization 
 

Data visualizers allow VRE users to interactively analyse their data inside the workspace. Following with 

the modular philosophy of VRE, visualizers are treated in a similar way than tools are. They are again 

defined in a MongoDB collection where accepted data types and formats are specified. However, they 

are not installed as separated VMs but installed together with the VRE core. 

Table 3 shows the available visualizers in MuG VRE￼ 

Visualizer Description Supported Data 

https://github.com/Multiscale-Genomics/mg-tool-api
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NGL Viewer 
[23] 

NGL Viewer is a web application for molecular visualization. WebGL 
is employed to display molecules like proteins and DNA/RNA with a 
variety of representations. 

3D Structures and 
MD trajectories 
(PDB, DCD) 

JBrowser 
[24] 

JBrowse is a fast, embeddable genome browser built completely 
with JavaScript and HTML5, with optional run-once data formatting 
tools written in Perl.   

Genome sequence  
annotation related 
formats (BAM, BW, 
GFF, GFF3) 

TADKit [25] TADkit creates interactive 3D representations of chromatin 
conformations modeled from 3C-based interaction matrices. The 
user can overlay 1D and 2D tracks of genomic data to these 3D 
views to directly evaluate the relationship between the 3D structure 
of the genome and its biological function. 

HiC analysis data 
processed with 
TADBit (JSON, TXT) 

 

5.4. MuG Data repository 
Table 4 summarizes the data currently available at MuG repositories. Data is accessible through the 

specific interfaces. Table 5 summarized the additional annotation tracks available at JBrowse visualizer. 

Table 4. Data currently available at MuG repositories 

Data Set Origin and status Comments 

Reference Databases 

Protein Data Bank (MMB-IRB) RCSB. Weekly update MongoDB, REST API 

Uniprot (MMB-IRB) EMBL-EBI. Monthly update MongoDB, REST API 

Reference Genomes EMBL-EBI, Ensembl Raw files, and specific application 

formats 

Reference Annotation Tracks Diverse Displayed in JBrowse. See Table 5 

MuG specific data and metadata 

ArrayExpress Nucleosome 

related experiments 

EMBL-EBI ArrayExpress 

(metadata test set) 

MongoDB. Web access 

MuG specific simulation set MuG partners Available through BigNASim 

engine at MuG VRE web site 

https://paperpile.com/c/YW1QKh/iBts+4FfD
https://paperpile.com/c/YW1QKh/iBts+4FfD+61ua
https://paperpile.com/c/YW1QKh/RJvw
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Nucl. Acids Flexibility Data MuG partners Available at MuG VRE web site 

  

Table 5. Annotation tracks available a MuG VRE’s genome browser 

Data Source 

Saccharomyces cerevisiae 

Gene and Gene predictions 
Saccharomyces Genome Database 

[26] 

Gene structure / UTRs / transcribed regions 
Yassour et al, 2009  [27] 

 

Gene Models / introns / 5’ 3’ UTR’s / unannotated transcripts Nagalakshimi et al. 2008 [28] 

Transcription Start sites Zhang, Z and Dietrich FS. 200 [29] 

Chromatin modifications Kirmizis A. et al. 2007 [30] 

Nucleosome positions Mavrich et al. 2008 [31] 

Digital genomic footprinting Hesselberth et al. 2009 [32] 

H2A.Z nucleosome positions Albert et al. 2007 [33] 

H2A/H2B, H2A.Z/H2A.Z, H2A.Z/H2B log2 ChIp chip ratio 
Guillemette et al. 2005 [34] 

 

H3K4ac_set1D_on_WT, set1D_H3K4ac_on_H3, 

WT_H3K4ac_on_H3, WT_H3K4me3_on_H3 
Guillemette et al. 2011 [35] 

anti-Ac, H2AK7aci, H2BK16ac, H3K14ac, H3K18ac, H3K4me1, 

H3K4me2, H3K4me3, H3K9ac, H4K12ac, H4K16ac, H4K5ac, 

H4K8ac, mock, RNA PolII ChIP_chip 

Liu et al. 2005 [36] 

predicted average nucleosome occupancy, predicted nucleosome 

potential score, nucleosome sequence read count 

Field et al. 2008 [37] 

 

nucleosome positions, nucleoatac signal, nucleosome calling 

occurrences 
Schep et al. 2015 [38] 

ORC, Mcm2p binding, ARS sequences Xu et al. 2006 [39] 

ORC, ARS, Nucleosome positioning Eaton et al. 2010 [40] 

TATA_elements Rhee and Ough 2012 [41] 

Bur1, Cet1 (Capping enzyme), Ctk1 

Elf1, Kin28 (TFIIH), Paf1, Pcf11, Ser2P (RNA Pol II), Ser5P (RNA Pol 

II), Ser7P (RNA Pol II), Rpb3 (RNA Pol II), Spn1 (lws1), Spt16, Spt4, 

Spt5, Spt6, Spt6deltaC, Tfg1 (TFIIF), TFIIB 

Mayer et al. 2010 [42] 

 

Gal4, Phd1, Rap1, Reb1 Rhee and Pugh 2011 [43] 

Nucleosome architecture through cell cycle Deniz et al. 2016 [44] 

Drosophila melanogaster 

Genes, Transcripts  

Chromatin types through protein binding sites Filion et al. 2010 [45] 

Nucleosome organization Mavrich et al 2008 [46] 

Homo sapiens 

Refseq Genes  

Gencode Genes  

http://dx.doi.org/10.1038/srep19729
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6. DEVELOPMENT ROADMAP 
 

6.1. User workspace 

  
Current workspace is the central point of the VRE, as it is where input and output files are listed, and 

where tools and visualizers are selected. It reflects DMP metadata files, that in turn, are synchronized 

with the local file system. 

Future changes at the workspace go in the direction of globalizing the workspace, converting it into a 

single virtual data space. A more integrative space where user can access data in local and remote MuG 

instances, and selected public data, irrespective of the geographic location. Having this single data space 

requires the implementation of a distributed data model, solving security issues related the 

administration of file permissions and group roles in the DMP, and building the necessary infrastructure 

for selecting the appropriate cloud instance for tool execution and making data accessible for the 

process (see discussion in section 6.3). 

6.2. Computational layer      
     

MuG computational infrastructure is currently composed by three cloud implementations (BSC, IRB, EBI-

embassy). All MuG software components are ready to collaborate and operate remotely, hence the 

interconnection of these environments is being set up and tested. As a proof of concept, the 

development VRE instance located in the IRB is remotely deploying tools at the EBI-embassy 

infrastructure. The communication is based on REST calls by which VRE posts to the remote PMES server 

the tool job request, and the remote PMES instance deploys in the EBI-embassy cloud the targeted VM 

tool, and triggers the execution using EBI provided data. The standardization and development of this 

schema will allow to extend the number of supported e-infrastructures, opening the possibility of 

including other European platforms like EGI. 

6.3. Data and Storage 
      

The main MuG VRE is in in the process of fully migrating to the recently established DMP data model, 

based in the use of micro-services to manage data. After the migration is finished, all instances to MuG, 

including the main VRE workspace will act as any other DMP API client, opening the possibility to share 

data through a REST interface. However, apart from the management of files metadata, data itself needs 

to be carefully handled among MuG infrastructures. Data transfer and replication should be minimized 

in order to optimize procedure and resources, and data security and privacy need to be preserved along 

the whole process. 

The current data management plan covers data transfer based on REST services, which gives to VRE the 

chance to smartly manage the resources across the infrastructures and ensure that data redundancy 

rules fit the especial requirements of our system. In MuG, the data load of the three infrastructures is 

not balanced, neither is their computational resources or their repository accessibility, and furthermore, 

the resource’s end clients are diverse, they may accept streaming data (NGL viewer, simple HTTP 

downloads, etc) or may require to stage it in advance (tools executions itself, custom visualizers, etc). 
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Considering these particularities, there exists several software solutions that can complement the DMP 

strategy, so that VRE can delegate part of this data handling task. oneData [47],  iRODS [48] (used in 

EUDAT), or Owncloud globalize data access in distributed environments, and their inclusion is being 

studied. Redundancy rules of these engines are partially configurable, and the accessibility to them as 

local directories is also solved by most of them. However, challenges ahead include the dynamic and 

user-specific contextualization of these systems. 

 

7. MuG USAGE POLICIES 
 

7.1. User access policy 
      

Users sign in for free and access to the fully featured version of VRE. Registration is open, and as detailed 

in section 4.4.1, can use either local MuG users, or external ID providers. Once logged in, all tools and 

visualizers currently integrated in the VRE are widely available with no restrictions. However, each tool 

implementation respects the licensing rules of the original application or pipeline code, hence, a 

scenario where a certain tool is reserved to specific users is possible. Additionally, special conditions for 

highly demanding users can be negotiated. 

Regarding data storage, VRE guarantees a private and secure space for user’s personal data. VRE terms 

of use (https://dev.multiscalegenomics.eu/applib/getTermsOfUse.php) defines the security policy 

complied, where this data is, and who is responsible for it. A priori, the assigned quota is the same for 

all users, 20GB, although extra space can be granted individually to specific users if they request so via 

the help-desk section. 

VRE defines three different user roles that modulate the administrative tasks a user has rights on. 

Common users have no extra privileges, while tool developer users and admin users can better monitor 

tool’s operations running behind the interface. Furthermore, admin users have a complete panel for 

controlling the infrastructure usage (quotas, mails sent, etc) and administrating the rest of user’s 

privileges 

https://paperpile.com/c/YW1QKh/N6iG
https://paperpile.com/c/YW1QKh/8Vop
https://dev.multiscalegenomics.eu/applib/getTermsOfUse.php
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     Figure 14: Main panel control for admin users 

 

7.2. Tool developer accounts  
Tool developer users have special access requirements, as they need to understand what’s going on 
behind the VRE interface when fixing and debugging their tools within the platform. For helping on this 
procedure, tool developers can: 

● list the tools owned by the user, and visualize their tool definition JSONs to check the running 
configuration      

● consult in a simple pop up attached to each execution folder in the workspace, all the execution 
associated files (input metadata JSON, configuration tool JSON, submit file and output metadata 
JSON) that contains the data being transferred between VRE and the tool VM (Figure 15) 

● check absolute paths for their files 
● visualize the raw DMP metadata for all their files 
● create and edit the tool help pages using a Bootstrap Markdown editor [49] able to easily style 

the text and uploads images. 

https://paperpile.com/c/YW1QKh/j9zS
https://paperpile.com/c/YW1QKh/j9zS
https://paperpile.com/c/YW1QKh/j9zS
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Figure 15: Extra information available for tool developers when visiting file details in the workspace 

 

 

  



                                 

MuG–H2020-EINFRA-2015-1- 6  

 Deliverable 5.2 – Implementation of software components 29 

8. ANNEXES 

 

8.1. DMP data model: data types and file types 
 

MuG data management plan (DMP) includes a data model for files metadata that, as described in D4.5, 

includes the data type and the file type among other attributes to define the content and the format of 

user’s file. Here, the complete collection of data types supported by VRE, and their associated file types.  

 

Data Type Identifier Data Type Name Associated File Types 

chromatin_3dmodel Chromatin 3D structure PDB 

chromatin_3dmodel_ensemble Ensemble of chromatin 3D structures JSON 

chromatin_compartments Chromatin compartments data TXT 

chromatin_tads Chromatin TADs BED, TXT, 

chromatin_traj Chromatin trajectory DCD 

configuration_file Tool configuration file JSON, TXT, TSV 

data_atac_seq ATAC-Seq FASTQ, BAM, BED, WIG 

data_chip_seq ChIP-Seq BED, FASTQ, BAM, TSV 

data_dna_methylation DNA methylation FASTQ, WIG, TSV 

data_fish FISH data LIF, TIFF, PNG 

data_mnase_seq MNase-Seq FASTQ, BAM, BED 

data_rna_seq RNA-Seq FASTQ, TSV, HDF5, JSON 

data_wgbs Whole Genome Bisulfite Sequencing 

FASTQ, BAM, BAI, WIG, TSV, 

TXT 

docking_ranking Docking ranking score CSV, TXT, TSV 

hic_biases HiC Biases PICKLE 

hic_contacts_coverage HiC contacts coverage WIG, BW, TXT 

hic_contacts_differential HiC differential contacts TSV 

hic_contacts_matrix HiC contact matrix TXT, HDF5 

hic_contacts_peaks HiC contact peaks TSV 

hic_directionality HiC directionality index TXT 

hic_reads HiC sequencing reads FASTQ 

hic_sequences HiC aligned reads BAM 

hic_tads_scale HiC TADs scaling factor WIG 

md_restart MD restart file RST, CPT 

na_md_atom_traj_coords Nucleic acid MD trajectory coordinates XTC, NETCDF, MDCRD 
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na_md_atom_traj_top Nucleic acid MD trajectory topology TOP, TPR, PARMTOP, PDB 

na_md_cg_traj Nucleic acid MD CG trajectory MDCRD 

na_structure Nucleic acid 3D structure PDB 

na_traj Nucleic acid trajectory DCD, MDCRD 

na_traj_coords Nucleic acid trajectory coordinates XTC, NETCDF, MDCRD 

na_traj_top Nucleic acid topology TOP, TPR, PARMTOP, PDB 

nucleosome_dynamics Nucleosome dynamics BW, GFF3, BED, WIG, RDATA 

nucleosome_free_regions Nucleosome free regions BW, GFF3, BED, WIG 

nucleosome_gene_phasing Nucleosome phasing BW, GFF3, BED, WIG 

nucleosome_positioning Nucleosome positioning BW, GFF3, BED, WIG, TXT 

nucleosome_stiffness Nucleosome stiffness BW, GFF3, BED, WIG 

prot_dna_specificity Protein-DNA specificity TSV 

prot_dna_structure Protein-DNA complex structure PDB 

prot_structure Protein 3D structure PDB 

sequence_annotation Sequence Annotation 
BED, BB, BEDGRAPH, WIG, BW, 

GFF, GFF3, GTF, VCF, TBI 

sequence_dna DNA sequence FASTA, TXT 

sequence_genomic Genomic sequence FASTA 

sequence_mapping_index_bowtie Bowtie2 index files BT2, TXT 

sequence_mapping_index_bwa BWA index files AMB, ANN, BWT, PAC, SA 

sequence_mapping_index_gem Sequence mapping index GEM 

sequence_mapping_index_kallisto Kallisto index file IDX 

sequence_prot Protein sequence FASTA 

sequence_rna RNA sequence FASTA 

structure 3D structure PDB 

tool_intermediate_file Tool Intermediate file TAR 

tool_statistics Tool summary file TAR 

tss_classification_by_nucleosomes Nucleosome TSS BW, GFF3, BED, WIG 

 

8.2. Documents, Software and data models 
 

JSON schema and example of tool definition configuration file, compulsory for registering a now tool in 

VRE 

      1.   tool definition JSON - schema 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json 

      2.   tool definition JSON - example 

https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json
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https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.json 

 

JSON examples for the configuration files  sent between VRE and tool VMs  during the tool life cycle 

execution 

      3.   input metadata JSON - example 

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metadata.json 

      4.   configuration tool JSON - example 

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.config.json 

      5.   submit file - examples 

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.submit 

      6.   Output metadata JSON - example 

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.json 

 

8.3. Usage statistics 
 

Last year usage statistics reflect the major VRE events ( April 2017  workshop, November 2017 Demo 

and Release). Coinciding with these events, visitors and new users increase, currently reaching 43 

registered users. 

Total number of registered users 
● Admin users 
● Tool developers 
● Common users 

43 
  2 
12 
29 

Total used space / total quota 54/860 GB 

 

 

Figure 13. VRE page views during last year filtering out partner institution domains 
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Figure 13. Last year VRE sessions (time  user actively engaged in the  website) and users (who have initiated at 

least one session) 

 
Figure 14.  VRE tools usage since the release (last 15 days). (*) Correspond to those tools internally launched by 

VRE when I. importing a remote resource into workspace, II. importing a BAM file  
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