
 

This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 676556. 

 

 

 

 

 

 

 

 

 

 

 

Project Acronym: MuG 

Project title: Multi-Scale Complex Genomics (MuG) 

Call: H2020-EINFRA-2015-1 

Topic: EINFRA-9-2015 

Project Number: 676556 

Project Coordinator: Institute for Research in Biomedicine (IRB Barcelona) 

Project start date: 1/11/2015 

Duration: 36 months 

 

Deliverable 4.6: Benchmarks and documentation 

 

Lead beneficiary: The European Bioinformatics Institute (EMBL-EBI) 

Dissemination level: PUBLIC 

 

Due date: 31/10/2018 

Actual submission date: 31/10/2018 

 

 

Copyright© 2015-2018 The partners of the MuG Consortium 

 



 

 
H2020-EINFRA-2015-1- 676556 
Deliverable 4.6 – Benchmarks and documentation 

2/22 

 

Document History 

Version Contributor(s) Partner Date Comments 

0.1 Mark McDowall EMBL-EBI 08/10/2018 First draft 

0.2 Andrew Yates EMBL-EBI 10/10/2018 Revised version  

1.0   30/10/2018 Approved by Supervisory 
Board.  

     

     

     

     

     

     

 

 

 

  



 

 
H2020-EINFRA-2015-1- 676556 
Deliverable 4.6 – Benchmarks and documentation 

3/22 

Table of Contents 

1 EXECUTIVE SUMMARY 

2 INTRODUCTION 

3 PIPELINE DESIGN UPDATES 

3.1 Metadata Class 

3.2 Tool Class 

3.3 Workflow Class 

3.4 Pipeline 

3.5 Code Quality, Testing and Documentation 

4 TOOL AND PIPELINE INTEGRATION 

4.1 Tools 

4.1.1 Capture HiC Analysis 

4.1.2 Externally Developed Tools 

4.2 Pipelines 

5 BENCHMARKING 

5.1 Tool Optimisation 

5.1.1 Development of Luigi 

5.1.2 Sequence Alignment 

5.1.2.1 File Splitting 

5.1.2.2 BAM Merge 

5.1.2.3 FASTQ Alignment 

5.1.3 Peak Calling by Chromosome 

5.2 Pipeline Performance 

6 DOCUMENTATION 

6.1 User Documentation 

6.2 Developer Documentation 

7 CONCLUSIONS 

8 REFERENCES 

9 ANNEXES 

9.1 Abbreviations  



 

 
H2020-EINFRA-2015-1- 676556 
Deliverable 4.6 – Benchmarks and documentation 

4/22 

1 EXECUTIVE SUMMARY 
The following document describes the tools and pipelines that have been integrated into the VRE 

based on D4.3 along with relevant steps take to optimise the code. In total there are 29 tools that have 

been wrapped as part of this Work Package or in collaboration with other packages along with 

documentation, unit testing and matching the coding standards set by the consortium. All of the tools 

are based on the Tool and DM APIs that had been developed as part of WP5 and D4.4 respectively to 

allow for a harmonious integration pathway. The document also describes the efforts that have been 

taken to document the VRE and requirements for external developers that was to integrate new tools. 

To test the integration documentation and expand the functionality of the site the CHiCAGO tool has 

been wrapped based on the templates and documentation. Groups not involved with the initial 

development of the Tool API framework have also started to use the documentation to wrap their own 

tools and pipelines using the documentation and provide feedback when information is not clear. 
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2 INTRODUCTION 
From user to developer, providing accurate and relevant information for the task they wish to 

complete, whether that is how to align a sequence, knowing how long a process should take to 

complete or creating a new tool, documentation plays a vital role. Clear documentation and 

benchmarks provides the user with knowledge about what they can do and how long it will take. This 

prevents users leaving when they are lost, from become impatient when pipelines take time and 

informs users about the what they are doing. 

Developers are also a key part and require targeted documentation, especially for the long term 

maintainability of code. Providing developers with clear documentation and common frameworks 

about how they are able to participate with the project and enhance the virtual research environment 

(VRE) with their own tools and pipelines is key. This will encourage others to get involved and keep the 

service relevant as new techniques are developed. 

To address both the users and developers a large resource of documentation has been created to guide 

researchers that want to interact with the VRE. Work has also been done to try and address 

benchmarking the tools and pipelines and feeding this back to the users. To maintain commonality and 

reduce technical debt between tools and pipelines created by different developers, common 

frameworks and standards have been put in place. 
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3 PIPELINE DESIGN UPDATES 
Based on the work done in D4.3, along with collaboration with teams in WP5 and WP6,  the Tool API 

was developed by WP6. The Tool API is a python library created to formalise the description of a 

pipeline. It provides a wrapping framework that can be used to easily incorporate tools into the VRE 

via a common interface and utilises the pyCOMPSs infrastructure to provide a convenient way to 

enable parallelisation of the tools. 

The Tool API framework encompasses the interface with the VRE as well as defining a consistent 

structure for how to wrap tools and how they are integrated into a workflow. A pipeline is what runs 

a workflow and handles the inputs from the VRE; it requires 2 input JSON files and the location of an 

output metadata JSON file for files created by the workflow, defined in D5.2. For the input JSON files 

the first lists the input files, what output files are expected and any parameters defined in the VRE and 

required by the tools run within a workflow. The second JSON file contains the location and metadata 

about all of the input files. At runtime the Tool API handles imports both JSON files making all of the 

metadata, files and arguments available within the workflow. Once the workflow has completed the 

Tool API exports the metadata for each file that is required as a JSON file in the location specified. 

3.1 Metadata Class 
The Metadata class encapsulates the descriptive information about a file. This information is either 

extracted from the input JSON files when the workflow is initiated or created by each tool when the 

file they are to return has been generated. The parameters stored within the Metadata class match 

with the parameters defined in for each entry in the DM API as defined in D4.5 Table 3.1.1. 

3.2 Tool Class 
The Tools class wraps a single tool or function where all processing is self contained. With the use of 

pyCOMPSs breaking down of pipelines into separate tools means that it is possible to run multiple 

tasks at the same time if there are 2 tools that can be run independently of each other (ie in parallel). 

Each tool class minimally consists of an initialisation function for loading tool configuration parameters 

and a run function. The run function should be able to take 3 dictionary objects defining the input files, 

the input file metadata and the required output files. The run function controls the running of a tool 

defined within its own function. If the tool can be run in parallel, python decorators should be used to 

define the function as a pyCOMPSs @task. 

3.3 Workflow Class 
The Workflow class is used to wrap one or more tools and manages the merging of the output files and 

metadata from tools. The workflow must contain an initialisation function for loading configuration 

information and a run function for calling each of the tools. A pipeline is a script that contains the 

workflow class, but also takes the input files from the VRE. When a pipeline is run it automatically loads 

the JSON files provided from the VRE into Metadata classes and passes the information to the workflow 

run class. The structure of the Workflow class has been designed so that it mirrors the interface of the 

Tool, this is to allow for other pipelines to be inherited as tools. 

3.4 Pipeline 
The pipeline is a script that handles the inputs from the VRE and initialises of the Workflow class. The 

pipeline can contain the whole workflow. These are the main scripts that are run by the VRE when a 

task is run via the VRE. 
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3.5 Code Quality, Testing and Documentation 
As defined in the report D4.5 section 3.3 all the code for the MuG project conforms to a common set 

of standards for documentation (see MS14) and for code quality: 

● https://multiscale-genomics.readthedocs.io/en/latest/coding_standards.html 

All the code for the Tool API is provided via GitHub (https://github.com/Multiscale-Genomics/mg-tool-

api) and the API documentation is available on ReadTheDocs (https://mg-tool-

api.readthedocs.io/en/latest/). As part of good coding practice, unit tests have also been developed to 

ensure that if there are changes to the API this does not break the functionality. To enforce the coding 

standard, check that the documentation builds correctly and that changes to the code have not broken 

any of the tests Travis-CI is used to automatically build and test the library for every commit to the 

GitHub repository. 

 

 

 

 

  

https://multiscale-genomics.readthedocs.io/en/latest/coding_standards.html
https://github.com/Multiscale-Genomics/mg-tool-api
https://github.com/Multiscale-Genomics/mg-tool-api
https://mg-tool-api.readthedocs.io/en/latest/
https://mg-tool-api.readthedocs.io/en/latest/
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4 TOOL AND PIPELINE INTEGRATION 

Based on the framework defined by the Tool API, the pipelines reported in D4.3 have been refactored 

using the new infrastructure and made accessible in a repository called mg-process-fastq on GitHub at 

the following URL: 

● https://github.com/Multiscale-Genomics/mg-process-fastq 

4.1 Tools 
Since the D4.3 report the pipelines were analysed to identify the units of work that were performed 

within each pipeline, where there was commonality between pipelines and whether the units of work 

could also be split down further to provide greater flexibility. Table 1 lists the tools that have been 

created based on this review. Reformatting of the overall structure of the pipelines has reduced code 

duplication allowing for greater code reuse, especially with the pipelines that use the same aligners or 

filtering steps. 

Tool Description Reference 

BioBamBam2 Highlighting of duplicates in Bam files https://github.com/gt1/
biobambam2 

Bowtie - Indexer Generate genome indexes and 
package them within an archive file 
ready for the aligners 

[Langmead2012] 

Bowtie - Aligner Aligner of single and paired end data [Langmead2012] 

BS Seeker2 - Indexer Generate genome indexes and 
package them within an archive file 
ready for the aligner 

[Guo2013] 

BS Seeker2 - Filter Filtering of duplicates and artifacts 
from the FASTQ files 

[Guo2013] 

BS Seeker2 - Aligner Alignment of single and paired end 
data ready for methylation peak 
calling 

[Guo2013] 

BS Seeker2 - Methylation Caller Peak caller to identify regions that 
have been methylated 

[Guo2013] 

BWA - Indexer Generate genome indexes and 
package them within an archive file 
ready for the aligners 

[Li2010] 

BWA - ALN Aligner BWA aligner for single and paired end 
data using the ALN algorithm 

[Li2010] 

BWA - MEM Aligner BWA aligner for single and paired end 
data using the MEM algorithm 

[Li2010] 

FASTQ Splitter Tool for splitting large FASTQ files  

https://github.com/Multiscale-Genomics/mg-process-fastq
https://github.com/gt1/biobambam2
https://github.com/gt1/biobambam2
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(single or paired end) into chunks of a 
defined size 

GEM Indexer Generate genome indexes and 
package them within an archive file 
ready for the aligners 

[Marco-Sola2012] 

iDEAR Peak caller for iDamID-seq data [Gutierrez-Triana2016] 

iNPS Peak caller for MNase-seq data [Chen2014] 

Kallisto Indexer Indexer of cDNA for for use in RNA-
seq analysis 

[Bray2016] 

Kallisto Quant Tool for quantifying the level of 
expression of transcripts 

[Bray2016] 

MACS2 Peak caller for ChIP-seq data [Zhang2008] 

Sleuth RNA-seq differential analysis tool that 
uses the output from Kallisto 

[Pimentel2017] 

TADbit - bin Binning of the adjacency matrix [Serra2016] 

TADbit - Filter Filter technical errors [Serra2016] 

TADbit - Full Mapper Mapping reads to the genome [Serra2016] 

TADbit - Generate TADS TAD prediction [Serra2016] 

TADbit - Model Generate 3D models [Serra2016] 

TADbit - Normalise Normalise the matrix [Serra2016] 

TADbit - Parse Mapping Generate the adjacency lists [Serra2016] 

TADbit - Save HDF5 Matrix Save matrix in HDF5 index file [Serra2016] 

TADbit - Segment TAD prediction [Serra2016] 

TrimGalore FASTQ read quality trimming. Is a 
wrapper around cutadapt 
[Martin2011] and FASTQC 
(https://www.bioinformatics.babraha
m.ac.uk/projects/fastqc/).  

http://www.bioinforma
tics.babraham.ac.uk/pr
ojects/trim_galore/ 

Validate FASTQ (FASTQC) Analyse the quality of reads in a 
FASTQ file(s) 

https://www.bioinform
atics.babraham.ac.uk/p
rojects/fastqc/ 

Table 1: Individual tools that have been wrapped in the mg-process-fastq repository 

There is an additional range of ancillary modules to wrap functionality that is required by multiple 

tools, but not required as a tool in its own right. This includes the wrapping of functions for handling 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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bam and fastq files using SamTools [Li2009] (via the python library pysam and calls to BedTools 

[Quinlan2002]) and functions for the reading and manipulation of FASTQ files. Initial work has been 

done to start to move this functionality into a separate repository to allow for easier re-use of the 

code. 

● https://github.com/Multiscale-Genomics/mg-common 

New tools that have been added since D4.3 include iDEAR [Gutierrez-Triana2016], Sleuth 

[Pimentel2017], TrimGalore and FastQC. iDEAR allows for the analysis of iDamID-seq data and Sleuth 

is a differential analysis package for identifying differentially expressed genes based on the results of 

the Kallisto analysis. TrimGalore and FastQC are tools for the analysis and trimming of FASTQ reads to 

help users to get the most accurate alignments. 

4.1.1 Capture HiC Analysis 
Capture Hi-C is a technique for identifying the genomic interactions around specific regions of DNA. 

This allows researchers to focus in on regions of interest rather than analysing the nucleus as a whole. 

The analysis of this data is not directly covered by the TADbit pipelines so CHiCAGO [Cairns2016] is 

being integrated as a pipeline for the normalisation of Capture Hi-C data. As part of the integration, 

HiCUP [Lieberman-Aiden2009,Wingett2015] is also being wrapped for the alignment and interaction 

assignment as part of the initial phase. However, TADbit will be investigated for the identification of 

interactions follow by using CHiCAGO for the normalisation of the datasets. Further work is going to 

be done to optimise the CHiCAGO algorithm to take advantage of the pyCOMPSs infrastructure. 

4.1.2 Externally Developed Tools 
Effort has also been made to reach out to tool developers outside of the MuG Consortium to encourage 

them to integrate their tool within the MuG VRE. The first has been Vera Pancaldi and Miguel Madrid 

who are wrapping their ChA tool [Pancaldi2016]. Efforts have also been made to reach out to others 

that have tools that are beneficial to the community as a whole. These include: 

● Carl Barton - ChromoTrace 

● Sean O’Donoghue - Rondo.ws 

● Katie Pollard - ShapeMF 

● Shamith Samarajiwa - Deep Neural Network predictor of TADs and long range interactions 

  

https://github.com/Multiscale-Genomics/mg-common
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4.2 Pipelines 
For all of the individual tools there is a matching pipeline ready for integration into the VRE. For the 

pipelines that were highlighted in D4.3 these have been refactored to use the Tool API and the new 

tool framework (Table 2). 

Pipeline Description Tools Repository 

Process Genome Single administrative 
process for the pre-indexing 
of genomes 

Bowtie2 Indexer 
BWA Indexer 
GEM Indexer 

mg-process-fastq 

Process ChIP-seq Analysis of ChIP-seq data. 
Aligns single or paired end 
FASTQ data, filters out 
experimental artifacts and 
performs the peak calling 

BWA ALN 
BioBamBam2 
MACS2 

mg-process-fastq 

Process DamID-seq Analysis of iDamID-seq data 
from FASTQ to peak calling 

BWA MEM 
BioBamBam2 
BSforge 
iDEAR 

mg-process-fastq 

Process MNase-seq Analysis of MNase-seq data 
from FASTQ to peak calling 

BWA MEM 
BioBamBam2 
iNPS 

mg-process-fastq 

Process RNA-seq Alignment and expression 
level calculated 

Kallisto Index 
Kallisto Quant 

mg-process-fastq 

Process WGBS Analysis of WGBS data from 
FASTQ to peak calling 

 mg-process-fastq 

ATAC-seq Analysis of ATAC-seq data 
from FASTQ to peak calling 

BWA MEM 
TrimGalore 
MACS2 

ATAC-seq 

CHi-C Alignment and 
normalisation of Capture Hi-
C data 

HiCUP 
CHiCAGO 

CHi-C 

Table 2: Pipelines that use more than one tool. All of the repositories are available from the Multiscale Complex Genomics 

GitHub account (https://github.com/Multiscale-Genomics). Pipelines that are highlighted in bold were identified as new 

additions since the D4.3 report. 

 

  

https://github.com/Multiscale-Genomics
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5 BENCHMARKING 

5.1 Tool Optimisation 
The first major improvement has been the adoption of the Tool API. Independent of runtime speeds, 

this has had a positive effect on the development of tools and workflows increasing the efficiency of 

development and has made the process more transparent. This is beneficial for the long term 

development of the project making it simpler for future tool integration and maintenance or existing 

code. 

For many of the tools that have been wrapped they worked in a linear fashion and require linear 

processing of the data, but there are certain steps that can be optimised to run more efficiently within 

an HPC environment. The major improvements have come from splitting up the input data in a sensible 

manner and then running the tool as many times as required in a parallel fashion and merging the final 

results. 

5.1.1 Development of Luigi 
So that optimisations to the code could be tested to see if they made a change to the runtimes of the 

pipelines work was done locally at the EMBL-EBI. Luigi (https://github.com/spotify/luigi) is a python 

library developed at Spotify for running complex pipelines within HPC environments. It was selected 

as an inplace library replacement of pyCOMPSs due to it being functionally very similar for workflow 

management using python decorators to wrap functions that can be run within an HPC environment. 

The major difference to pyCOMPSs is that it can be run on different cluster management architectures. 

The EMBL-EBI cluster uses the Load Sharing Facility (LSF), the closest variant in Luigi is the SunGrid 

Engine (SGE) cluster management software. The development of the SGE bindings in Luigi had been 

created from a branch of code developed for using LSF, so we reached out to the original developers 

and managed to update and improve their code and finally get it merged into the Luigi library. 

5.1.2 Sequence Alignment 
For workflows that use the BWA ALN, BWA MEM and Bowtie2 tools it is possible to split the input 

FASTQ files into chunks, align the reads and then merge the files into a single bam file at the end of the 

job. To test this pipelines were adjusted to use the Luigi library so that the tools could run on the LSF 

cluster at the EBI. The example datasets are the human datasets DRR000150 (21713314 single end 

reads). 

5.1.2.1 File Splitting 

Due to the requirements of (py)COMPSs there has to be a known number of input and output files, in 

this case a FASTQ as input and an archive (tar.gz) of all the subsets as output. For splitting the FASTQ 

file the number of output smaller FASTQ files has little effect on the time as shown in Table 3 using the 

DRR000150 FASTQ dataset. The time taken to split the file into FASTQ files containing 1M or 10M reads 

is only slightly slower than reading through the file.  

https://github.com/spotify/luigi


 

 
H2020-EINFRA-2015-1- 676556 
Deliverable 4.6 – Benchmarks and documentation 

13/22 

 

Reads in output FASTQ Files Time 

21,713,314 1min 54.777sec 

100,000 1min 11.596sec 

1,000,000 1min 57.302sec 

10,000,000 1min 56.396sec 

Table 3: The times taken to read through a FASTQ file and split it into smaller FASTQ files. The top row represents reading 

through the DRR000150 dataset and creating a single FASTQ file. 

5.1.2.2 BAM Merge 

Increasing the number of alignments that have to happen also increases the number of merging steps 

that need to be performed. For this test the dataset SRR892982 was used as it had 55,435,326 aligned 

reads. As Table 4 shows the simplest methods is to merge everything at the same time. 

Batch Size Round 1 Round 2 Total 

56 25m 48.644s  25m 48.644s 

10 5m 12.175s 
5m 7.482s 
4m 57.378s 
5m 0.048s 
5m 3.393s 
2m 44.943s 

25m 30.003s 30m 42.178s 

Table 4: Times for the merging of 56 bam files. For the batch size of 10 this required 6 jobs running in parallel then a second 

job to perform the final merge. The total time for the batching is equivalent to the sum of the longest in each round 

Applying this to the pipeline, COMPSs requires that there are a known number of input and output 

files. So iteratively performing the merges in batches of 10 and having functions for handling 5, 4, 3 

and 2 files is enough to cover all scenarios. Doing this does not drastically affect the run time taking 

only 5 minutes longer than merging everything in the same step. 

5.1.2.3 FASTQ Alignment 

For testing the alignment process DRR000150 was used along with BWA ALN for the alignment. This 

used a bam batch merge size of 10 across a range of FASTQ subset file sizes. Table 5 shows that 

subdivision of the original FASTQ file results in faster completion times, even with the merging penalty. 

The largest difference is reducing the number of reads that are present in a single job, however at the 

lower end there is then the potential for bam merging issues due to the number of bam files that need 

to be merged. 

As a result of this the alignment modules were modified so that FASTQ files are initially split into FASTQ 

files of up to 1M reads and the merging is done in batches of 10. 
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Reads per fastq file Time 

21,713,314 62m 3.707s 

100,000 18m 41.906s 

1,000,000 16m 22.858s 

10,000,000 42m 16.217s 

Table 5: The times for each set include the splitting of the bam file, alignment and then merging the results. 

5.1.3 Peak Calling by Chromosome 
Where it is possible, another area that it is possible to make changes to reduce the time for 

computation is when peak calling and the peaks can be called on a per chromosome independently 

without knowledge of other chromosomes. This was the case for MACS2 where the peaks could be 

called for each chromosome and then the results merged at the end. 

5.2 Pipeline Performance 
Based on the improvements identified using Luigi in the previous section, this was applied to all 

pipelines for where the highlighted changes were applicable. Once the changes were made and the 

final pipelines were tested in a local VM they were loaded onto a VM at the IRB and tests were run to 

determine how long the pipeline would take to complete on that VM with pyCOMPSs used to manage 

the jobs that get run. For this testing there was only a single VM, but this is enough to get an estimate 

of the performance for each of the pipelines. 

For testing the pipelines the datasets used are shown in Table 6. Tables 7 and 8 show the times for 

running each of the pipelines and tools with human and yeast data to provide the user with a guide as 

to the required runtimes for each pipeline. 
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Dataset Species Data type Single/ Paired Reads 

Avg. read 

length %GC 

DRR000150 Human ChIP-seq Single 21713314 36 43 

SRR4420194 Human ChIP-seq Paired 5384541 25 46 

DRR000386 Human MNase-seq Single 21713314 36 43 

DRR000897 Human RNA-seq Single 22635328 37 54 

ERR1227470 Human WGBS Single 18836903 20-51 35 

ERR1094252 Yeast ChIP-seq Paired 1067084 51 38 

ERR1380243 Yeast RNA-seq Single 9270157 50 41 

SRR1916129 Yeast WGBS Single 5618700 51 19 

Table 6: Datasets used for benchmarking. 

 

Pipeline Species Dataset Single/Paired Time 

Process Genome Yeast R64.1.1 NA 0m 54.289s 

Process ChIP-seq Yeast ERR1094252 Paired 5m 1.638s 

Process RNA-seq Yeast ERR1380243 Single 2m 0.866s 

Process WGBS Yeast SRR1916129 Single 17m 22.185s 

Process Genome Human GRCh38 NA 153m 18.459s 

Process ChIP-seq Human DRR000150 Single 81m 6.452s 

Process RNA-seq Human DRR000897 Single 20m 11.040s 

Table 7: Runtimes for pipelines that consist of multiple tools when run within a single VM at the IRB run from the command 

line. The “Process Genome” pipeline generates the Bowtie2, BWA and GEM indexes required by the other pipelines. 
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Tool Species Dataset Single/Paired Time 

FASTQC Yeast SRR1916129 Single 1m 15.583s 

TrimGalore Yeast SRR1916129 Single 2m 53.577s 

TrimGalore Yeast ERR1094252 Paired 1m 11.775s 

Bowtie2 Yeast SRR1916129 Single 8m 30.564s 

BWA ALN Yeast SRR1916129 Single 9m 10.366s 

BWA MEM Yeast SRR1916129 Single 9m 17.860s 

Bowtie2 -  Yeast ERR1094252 Paired 3m 52.173s 

BWA ALN Yeast ERR1094252 Paired 3m 34.648s 

BWA MEM Yeast ERR1094252 Paired 3m 30.990s 

BioBamBam Yeast SRR1916129 Single 1m 40.622s 

BioBamBam Yeast ERR1094252 Paired 0m 56.367s 

MACS2 Yeast ERR1094252 Paired 0m 44.463s 

BS Seeker2 Indexer Yeast R64.1.1 Single 1m 2.456s 

BS Seeker2 Filter Yeast SRR1916129 Single 1m 31.421s 

BS Seeker2 Aligner Yeast SRR1916129 Single 14m 28.067s 

BS Seeker2 Peak Caller Yeast SRR1916129 Single 2m 47.123s 

FASTQC Human DRR000150 Single 3m 4.179s 

TrimGalore Human DRR000150 Single 7m 35.523s 

TrimGalore Human DRR046352 Paired 37m 8.073s 

Bowtie2 Human DRR000150 Single  

BWA ALN Human DRR000150 Single 61m 29.971s 

BWA MEM Human DRR000150 Single 57m 49.779s 

Bowtie2 Human SRR4420194 Paired  

BWA ALN Human SRR4420194 Paired  

BWA MEM Human SRR4420194 Paired 42m 38.681s 

BioBamBam Human DRR000150 Single 5m 28.875s 

BioBamBam Human SRR4420194 Paired 2m 55.321s 

MACS2 Human DRR000150 Single 13m 55.766s 

BS Seeker2 Indexer Human ERR1227470 Single 413m 15.687s 

BS Seeker2 Filter Human ERR1227470 Single 4m 1.596s 

Table 8: Runtimes for pipelines for individual tools when run within a single VM at the IRB run from the command line. 
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6 DOCUMENTATION 
A crucial part to the success of a project reliant on code is the accessibility to documentation. In the 

case of the VRE there are several layers of documentation required: 

● User level: This covers the functionality of the VRE, the interface and guiding the user. 

● Developer level: Documentation and tutorials about tool integration. 

● Admin level: Information about the requirements of tools and the infrastructure parameters 

This covers the work done by developers as part of all work packages and act as part of the support 

network for users developed as part of Task 5.5 and extends the MS16 report. 

6.1 User Documentation 
There are several types of user documentation that is available on the VRE website. This covers the 

user of the VRE, tool specific documentation and tutorials about how to answer biological questions. 

The VRE and tool specific documentation provides details about the technicalities of using the site and 

the users workspace through to describing the tool and what are the available parameters for each of 

the tools. The biological tutorials were developed to guide researchers through which tools they 

required to answer a biological question, this was done to make the VRE more accessible and help 

those new to the field become comfortable with what is available. 

As new tools are developed and integrated into the VRE, developers are then required to provide 

documentation formatted for the VRE describing the tool and what it does for use in the User 

Documentation sections. They are also encouraged to provide tutorials about how researchers can 

answer biological questions using their tool and the other tools already in the VRE. In doing this they 

are then able to introduce their tool to the community by showing how it can be used. 

6.2 Developer Documentation 
For developers that want to integrate a tool into the VRE there is a comprehensive set of documents 

covering what is required and example code to help get them started. From the VRE there is 

documentation taking the developer step-by-step through the process of wrapping their tool and 

making it visible in the VRE (https://www.multiscalegenomics.eu/MuGVRE/instructions/). It also 

extends beyond the wrapping of the code to include the creation of testing scripts using pytest and 

linters to ensure that the code they develop complies to the Coding Standard required 

(https://multiscale-genomics.readthedocs.io/en/latest/coding_standards.html). As the project uses 

the Apache 2.0 license there are documents covering how it is applied within tool code for running in 

the VRE. The Apache 2.0 license allows for the sharing of the code and is compatible with many other 

licenses. 

To reduce the overhead with wrapping a tool we have developed a template repository 

(https://github.com/Multiscale-Genomics/mg-process-test). This is a basic pipeline and tool that 

matches the Coding Standard. As part of the template it includes documentation, and code testing. 

The template also has a predefined .travis.yml so that the developer is able to link their tool wrapper 

with Travis to automatically run the tests for the quality of the code, if the documentation builds and 

checks that the python tests pass to ensure functional code. The repository is also set up so that the 

code can be installed using the python package manager, pip. 

Once the user has developed their code they are able to test it locally within a virtual machine that 

matches the one used within the VRE. From here they can optimise the code using pyCOMPSs and 

minimise issues arising at installation and runtime within the VRE. 

https://www.multiscalegenomics.eu/MuGVRE/instructions/
https://multiscale-genomics.readthedocs.io/en/latest/coding_standards.html
https://github.com/Multiscale-Genomics/mg-process-test
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The documentation and use of the template repository places emphasis on creating high quality, well 

documented code with full and repeatable installation instructions. The use of Travis and defining the 

installation procedures as part of the Travis CI YAML file ensures that the developer is fully able to 

describe the installation procedures within their documentation. This makes the installation within the 

VRE a much smoother process. 

To further help developers we ran a workshop for tool integration at the EMBL-EBI site in September 

2018. All slides and materials are available from the VRE website 

(https://www.multiscalegenomics.eu/MuGVRE/training/). Further details about the workshop are 

reported in D2.8. 

 

 

 

  

https://www.multiscalegenomics.eu/MuGVRE/training/
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7 CONCLUSIONS 
The development of the Tool API and the template repository has acted to reduce the effort required 

to wrap a new tool as well as reducing the technical debt for maintenance if they were all implemented 

in different styles. Although this does not necessarily improve the performance from the users’ 

perspective it provides a stable and predictable platform for those that maintain the infrastructure 

years after the tool was introduced. 

Comprehensive and detailed documentation has been created to support the needs of both the user 

and the developer. As part of this steps have been taken to benchmark the tools and pipelines to help 

users understand what is happening behind the scenes and what to expect when they submit a job 

request. 

During the time period that this report covers efforts have also been made to extend the repertoire of 

tools for the analysis of sequence data. There has been the implementation of FASTQ analysis tools, 

extra pipelines for analysing new *-seq data types and the introduction of CHiCAGO for the 

normalisation of Capture Hi-C data. 
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9 ANNEXES 

9.1 Abbreviations 
DAC: Data access committee 

EGA: European Genome-phenome Archive 

ENA: European Nucleotide Archive 

FISH: Fluorescence in-situ hybridisation 

MINSEQE: Minimum Information about a high-throughput Sequencing Experiment 

OME: Open Microscopy Environment 

PDB: Protein Data Bank 

PMES: Programming Model Enactment Service 

SRA: Sequence read archive 

VRE: Virtual Research Environment 

WGBS: Whole Genome Bisulphate Sequencing 

 

 


